#### **Finding Possibly Related Entities**

Elon Musk's Tesla Powerwalls Have Landed in Puerto Rico





The solar batteries have reportedly been spotted in San Juan's airport.

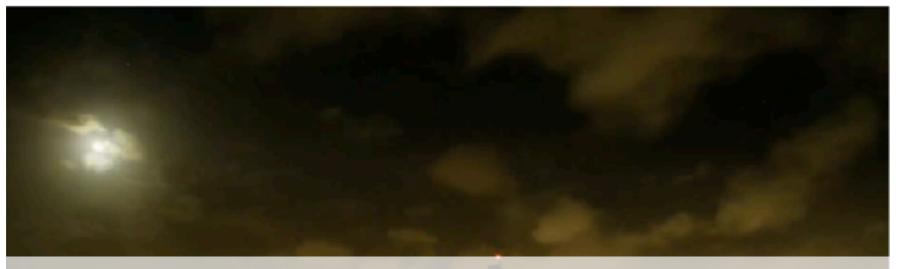
By John Patrick Pullen October 16, 2017

Exactly one week after Tesla CEO Elon Musk suggested his company could help with Puerto Rico's electricity crisis in the aftermath of Hurricane Maria, more of the company's Powerwall battery packs have arrived on the island, according to a photo snapped at San Juan airport Friday, Oct. 13.

Source: http://fortune.com/2017/10/16/elon-musks-tesla-powerwalls-have-landed-in-puerto-rico/

Elon Musk's Tesla Powerwalls Have Landed in Puerto Rico





How to automatically figure out Elon Musk and Tesla are related?



The solar batteries have reportedly been spotted in San Juan's airport.

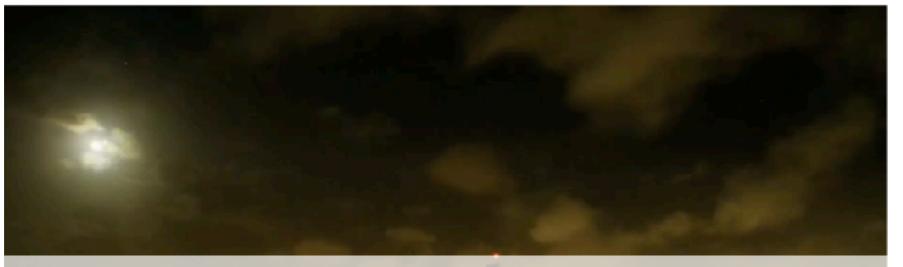
By John Patrick Pullen October 16, 2017

Exactly one week after Tesla CEO Elon Musk suggested his company could help with Puerto Rico's electricity crisis in the aftermath of Hurricane Maria, more of the company's Powerwall battery packs have arrived on the island, according to a photo snapped at San Juan airport Friday, Oct. 13.

Source: http://fortune.com/2017/10/16/elon-musks-tesla-powerwalls-have-landed-in-puerto-rico/

Elon Musk's Tesla Powerwalls Have Landed in Puerto Rico





How to automatically figure out Elon Musk and Tesla are related?



The solar batteries have reportedly been spotted in San Juan's airport.

By John Patrick Pullen October 16, 2017

Exactly one week after Tesla CEO Elon Musk suggested his company could help with Puerto Rico's electricity crisis in the aftermath of Hurricane Maria, more of the company's Powerwall battery packs have arrived on the island, according to a photo snapped at San Juan airport Friday, Oct. 13.

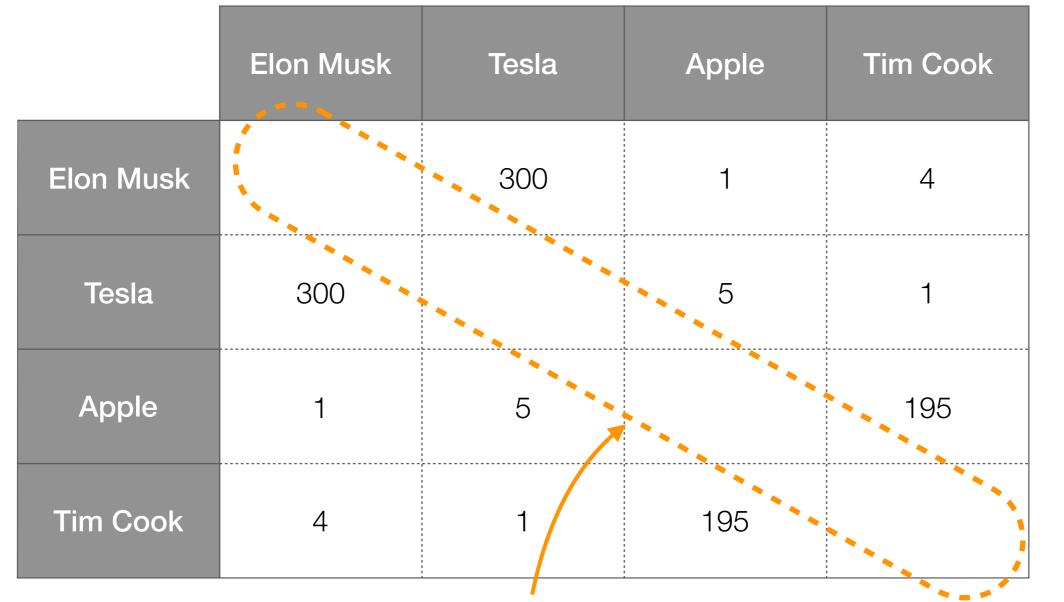
Source: http://fortune.com/2017/10/16/elon-musks-tesla-powerwalls-have-landed-in-puerto-rico/

For example: count # news articles that have different named entities co-occur

For example: count # news articles that have different named entities co-occur

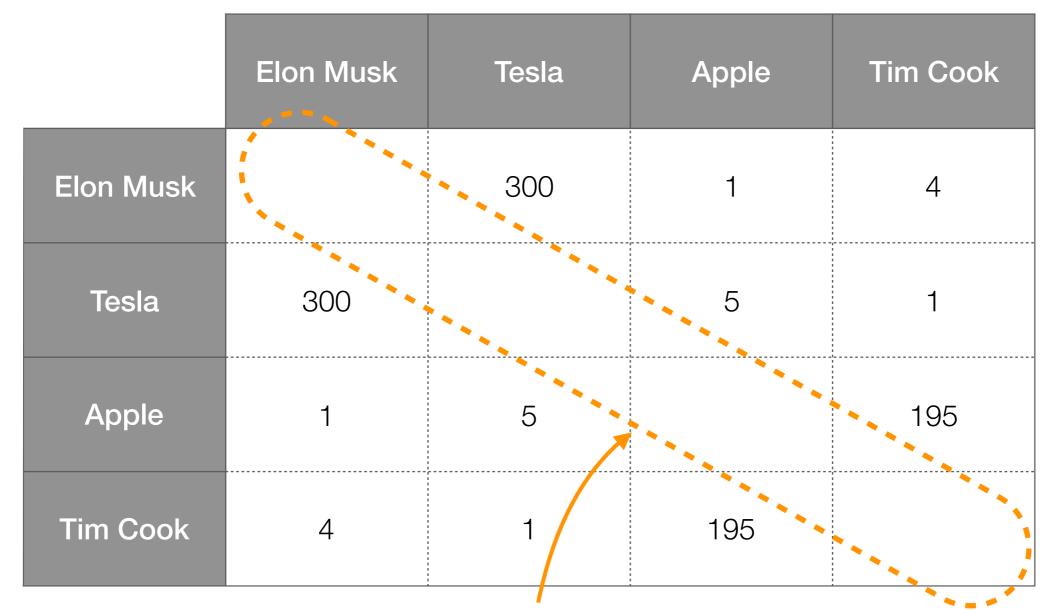
|           | Elon Musk | Tesla | Apple | Tim Cook |
|-----------|-----------|-------|-------|----------|
| Elon Musk |           | 300   | 1     | 4        |
| Tesla     | 300       |       | 5     | 1        |
| Apple     | 1         | 5     |       | 195      |
| Tim Cook  | 4         | 1     | 195   |          |

For example: count # news articles that have different named entities co-occur



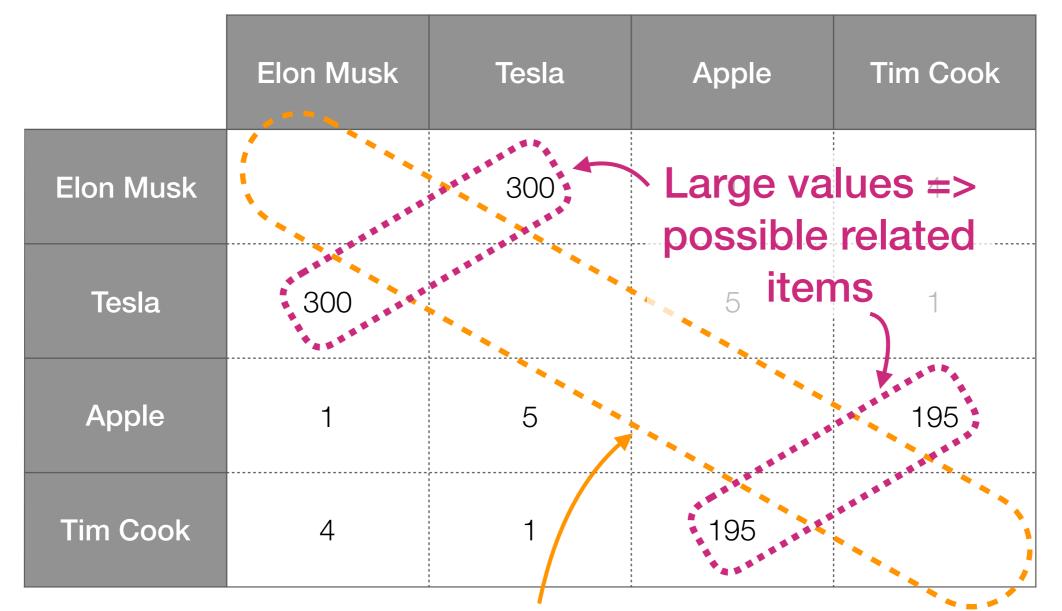
What does it mean for a named entity to co-occur with itself?

For example: count # news articles that have different named entities co-occur



What does it mean for a named entity to co-occur with itself? Example: could count # articles in which word appears  $\geq$  2 times

For example: count # news articles that have different named entities co-occur



What does it mean for a named entity to co-occur with itself? Example: could count # articles in which word appears  $\geq$  2 times

• Just saw: for all doc's, count # of doc's in which two named entities co-occur

- Just saw: for all doc's, count # of doc's in which two named entities co-occur
  - This approach ignores # of co-occurrences *within a specific document* (e.g., if 1 doc has "Elon Musk" and "Tesla" appear 10 times, we count this as 1)

- Just saw: for all doc's, count # of doc's in which two named entities co-occur
  - This approach ignores # of co-occurrences *within a specific document* (e.g., if 1 doc has "Elon Musk" and "Tesla" appear 10 times, we count this as 1)
  - Could instead add # co-occurrences, not just whether it happened in a doc

- Just saw: for all doc's, count # of doc's in which two named entities co-occur
  - This approach ignores # of co-occurrences *within a specific document* (e.g., if 1 doc has "Elon Musk" and "Tesla" appear 10 times, we count this as 1)
  - Could instead add # co-occurrences, not just whether it happened in a doc
- Instead of looking at # doc's, look at co-occurrences within a sentence, or a paragraph, etc

- Just saw: for all doc's, count # of doc's in which two named entities co-occur
  - This approach ignores # of co-occurrences *within a specific document* (e.g., if 1 doc has "Elon Musk" and "Tesla" appear 10 times, we count this as 1)
  - Could instead add # co-occurrences, not just whether it happened in a doc
- Instead of looking at # doc's, look at co-occurrences within a sentence, or a paragraph, etc

#### **Bottom Line**

- Just saw: for all doc's, count # of doc's in which two named entities co-occur
  - This approach ignores # of co-occurrences *within a specific document* (e.g., if 1 doc has "Elon Musk" and "Tesla" appear 10 times, we count this as 1)
  - Could instead add # co-occurrences, not just whether it happened in a doc
- Instead of looking at # doc's, look at co-occurrences within a sentence, or a paragraph, etc

#### **Bottom Line**

• There are many ways to count co-occurrences

- Just saw: for all doc's, count # of doc's in which two named entities co-occur
  - This approach ignores # of co-occurrences *within a specific document* (e.g., if 1 doc has "Elon Musk" and "Tesla" appear 10 times, we count this as 1)
  - Could instead add # co-occurrences, not just whether it happened in a doc
- Instead of looking at # doc's, look at co-occurrences within a sentence, or a paragraph, etc

#### **Bottom Line**

- There are many ways to count co-occurrences
- You should think about what makes the most sense/is reasonable for the problem you're looking at

# We aim to find *interesting* relationships by looking at co-occurrences



Image source: http://www.awf.org/sites/default/files/media/gallery/wildlife/Plains%20Zebra/Z-Billy\_Dodson\_3.jpg?itok=rzMdZ7LM

#### Black and white frequently co-occur, but is this relationship interesting?



Image source: http://www.awf.org/sites/default/files/media/gallery/wildlife/Plains%20Zebra/Z-Billy\_Dodson\_3.jpg?itok=rzMdZ7LM

#### Black and white frequently co-occur, but is this relationship interesting?

|       | Green | White | Black |  |
|-------|-------|-------|-------|--|
| Green | 1000  | 200   | 200   |  |
| White | 200   | 2000  | 350   |  |
| Black | 200   | 350   | 2000  |  |

How I'm counting: For each pixel, look at neighboring 4 pixels and compare their values (1 of "green green", "green white", "green black", "white white", "white black", "black black")

Image source: http://www.awf.org/sites/default/files/media/gallery/wildlife/Plains%20Zebra/Z-Billy\_Dodson\_3.jpg?itok=rzMdZ7LM

|       | Green | White | Black |
|-------|-------|-------|-------|
| Green | 1000  | 200   | 200   |
| White | 200   | 2000  | 350   |
| Black | 200   | 350   | 2000  |

|       | Green | White | Black |
|-------|-------|-------|-------|
| Green | 1000  | 200   | 200   |
| White |       | 2000  | 350   |
| Black |       |       | 2000  |

|       | Green | White | Black |
|-------|-------|-------|-------|
| Green | 1000  | 200   | 200   |
| White |       | 2000  | 350   |
| Black |       |       | 2000  |

Green, Green

|       | Green | White | Black |
|-------|-------|-------|-------|
| Green | 1000  | 200   | 200   |
| White |       | 2000  | 350   |
| Black |       |       | 2000  |

200 of these cards:

| Green, | Green |
|--------|-------|
|        |       |
| Green, | White |

|       | Green | White | Black |
|-------|-------|-------|-------|
| Green | 1000  | 200   | 200   |
| White |       | 2000  | 350   |
| Black |       |       | 2000  |

200 of these cards:

200 of these cards:

Green, White

Green, Green

Green, Black

|       | Green | White | Black |
|-------|-------|-------|-------|
| Green | 1000  | 200   | 200   |
| White |       | 2000  | 350   |
| Black |       |       | 2000  |

200 of these cards:

200 of these cards:

2000 of these cards:

Green, White

Green, Green

Green, Black

White, White

|       | Green | White | Black |
|-------|-------|-------|-------|
| Green | 1000  | 200   | 200   |
| White |       | 2000  | 350   |
| Black |       |       | 2000  |

200 of these cards:

200 of these cards:

2000 of these cards:

350 of these cards:

Green, White

Green, Green

Green, Black

White, White

White, Black

|       | Green | White | Black |
|-------|-------|-------|-------|
| Green | 1000  | 200   | 200   |
| White |       | 2000  | 350   |
| Black |       |       | 2000  |

200 of these cards:

200 of these cards:

2000 of these cards:

350 of these cards:

2000 of these cards:

Green, White

Green, Green

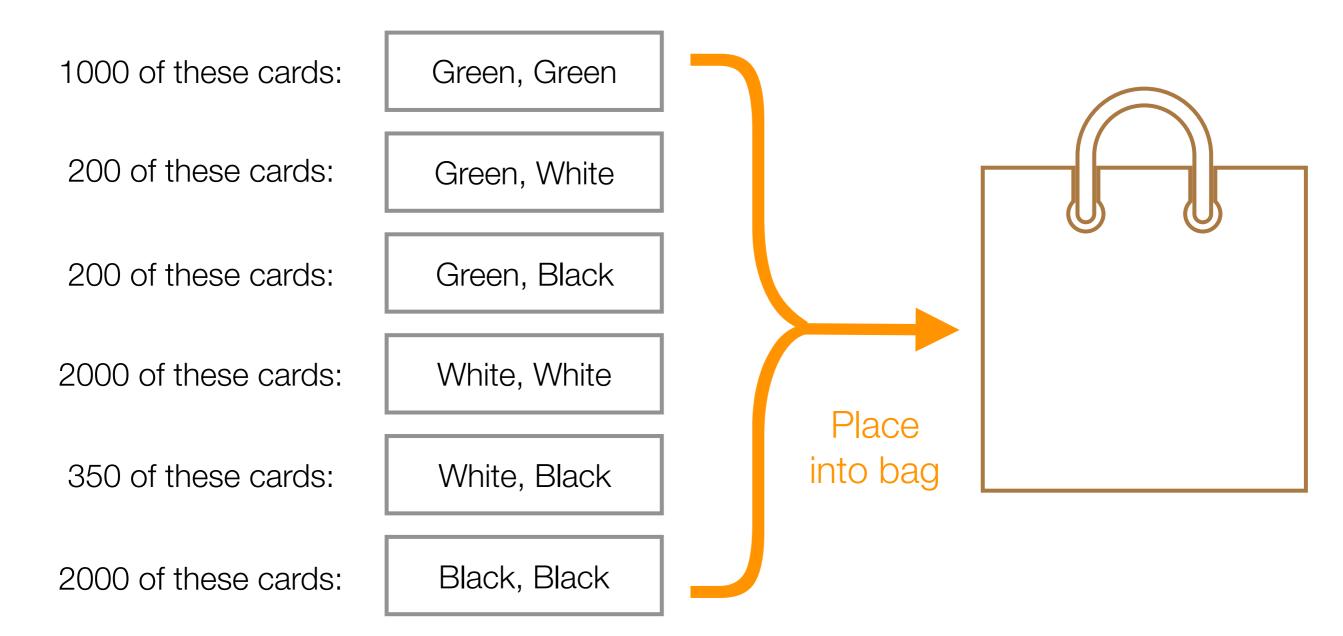
Green, Black

White, White

White, Black

Black, Black

|       | Green | White | Black |
|-------|-------|-------|-------|
| Green | 1000  | 200   | 200   |
| White |       | 2000  | 350   |
| Black |       |       | 2000  |



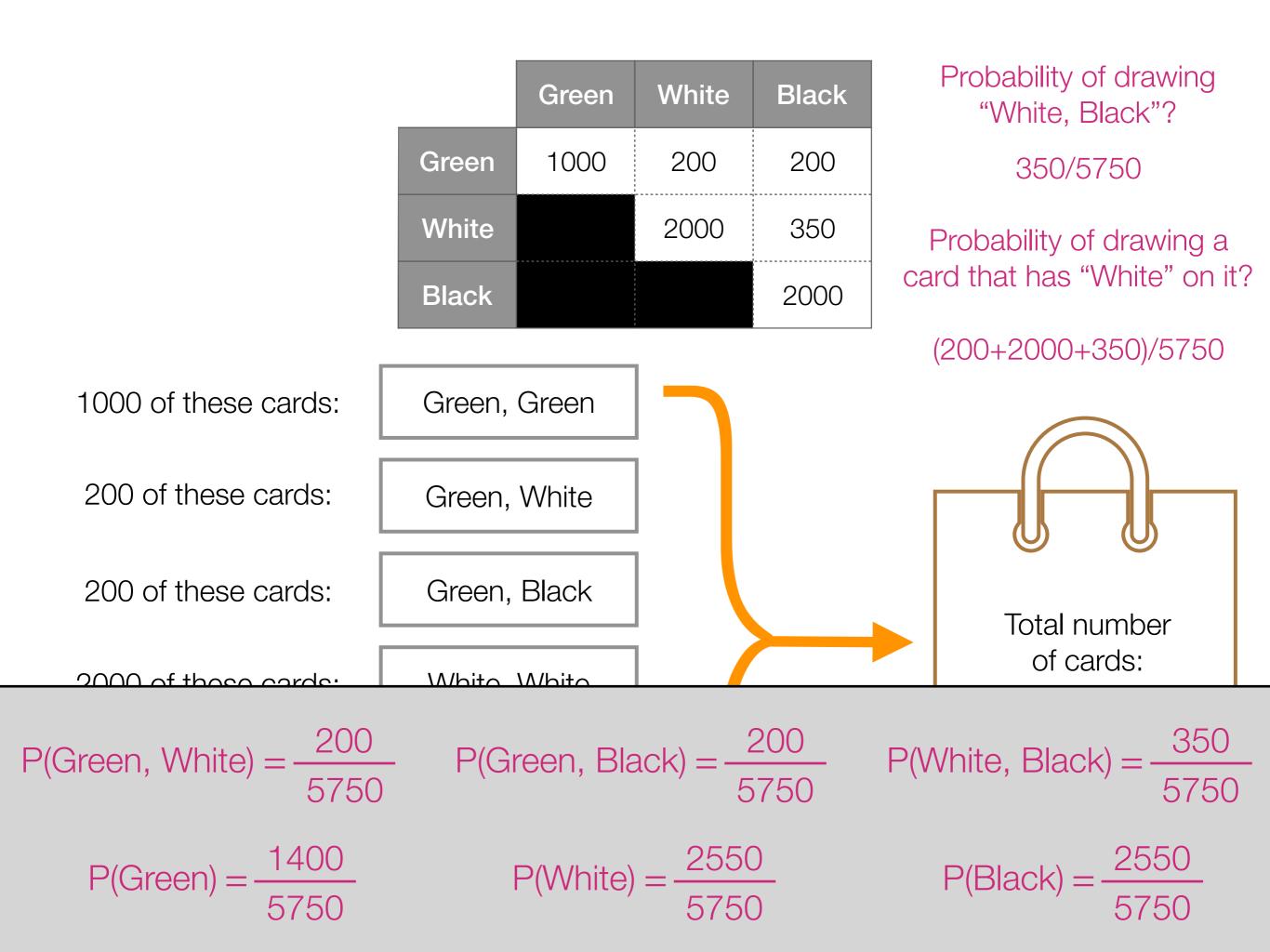
|                      |        | Green | White | Black   |
|----------------------|--------|-------|-------|---------|
|                      | Green  | 1000  | 200   | 200     |
|                      | White  |       | 2000  | 350     |
|                      | Black  |       |       | 2000    |
| 1000 of these cards: | Green, | Green |       |         |
| 200 of these cards:  | Green, | White |       |         |
| 200 of these cards:  | Green, | Black |       |         |
| 2000 of these cards: | White, | White |       | Place   |
| 350 of these cards:  | White, | Black |       | into ba |
| 2000 of these cards: | Black, | Black |       |         |

|                      |              | Green | White | Black   | Probability of drawing<br>"White, Black"? |
|----------------------|--------------|-------|-------|---------|-------------------------------------------|
|                      | Green        | 1000  | 200   | 200     |                                           |
|                      | White        |       | 2000  | 350     |                                           |
|                      | Black        |       |       | 2000    |                                           |
| 1000 of these cards: | Green,       | Green |       |         |                                           |
| 200 of these cards:  | Green, White |       | ]     |         |                                           |
| 200 of these cards:  | Green, Black |       |       |         | Total number                              |
| 2000 of these cards: | White, White |       |       | Place   | of cards:<br>5750                         |
| 350 of these cards:  | White,       | Black |       | into ba |                                           |
| 2000 of these cards: | Black,       | Black |       |         |                                           |

|                      |              | Green | White | Black | Probability of drawing<br>"White, Black"? |
|----------------------|--------------|-------|-------|-------|-------------------------------------------|
|                      | Green        | 1000  | 200   | 200   | 350/5750                                  |
|                      | White        |       | 2000  | 350   |                                           |
|                      | Black        |       |       | 2000  |                                           |
| 1000 of these cards: | Green,       | Green |       |       |                                           |
| 200 of these cards:  | Green, White |       |       |       |                                           |
| 200 of these cards:  | Green,       | Black |       |       | Total number                              |
| 2000 of these cards: | White,       | White |       | Place | of cards:<br>5750                         |
| 350 of these cards:  | White,       | Black |       | g     |                                           |
| 2000 of these cards: | Black,       | Black |       |       |                                           |

|                      | 1            | Green | White | Black            | Probability of drawing<br>"White, Black"? |
|----------------------|--------------|-------|-------|------------------|-------------------------------------------|
|                      | Green        | 1000  | 200   | 200              | 350/5750                                  |
|                      | White        |       | 2000  | 350              | Probability of drawing a                  |
|                      | Black        |       |       | 2000             | card that has "White" on it?              |
| 1000 of these cards: | Green,       | Green |       |                  |                                           |
| 200 of these cards:  | Green,       | White |       |                  |                                           |
| 200 of these cards:  | Green,       | Black |       |                  | Total number                              |
| 2000 of these cards: | White, White |       |       |                  | of cards:<br>5750                         |
| 350 of these cards:  | White,       | Black | ]     | Place<br>into ba |                                           |
| 2000 of these cards: | Black,       | Black |       |                  |                                           |

|                      |                              | Green        | White | Black   | Probability of drawing<br>"White, Black"? |
|----------------------|------------------------------|--------------|-------|---------|-------------------------------------------|
|                      | Green                        | 1000         | 200   | 200     | 350/5750                                  |
|                      | White                        |              | 2000  | 350     | Probability of drawing a                  |
|                      | Black                        |              |       | 2000    | card that has "White" on it?              |
|                      |                              |              | 1     | ·       | (200+2000+350)/5750                       |
| 1000 of these cards: | Green,                       | Green        |       |         |                                           |
| 200 of these cards:  | Green,                       | White        |       |         |                                           |
| 200 of these cards:  | Green, Black<br>White, White |              |       |         | Total number                              |
| 2000 of these cards: |                              |              | ]     | Place   | of cards:<br>5750                         |
| 350 of these cards:  | White,                       | White, Black |       | into ba |                                           |
| 2000 of these cards: | Black,                       | Black        |       |         |                                           |



P(A, B)

P(A, B) P(A) P(B)

 $PMI(A, B) = log \quad \frac{P(A, B)}{P(A) P(B)}$ 

$$PMI(A, B) = log \quad \frac{P(A, B)}{P(A) P(B)}$$

$$PMI(A, B) = \log_2 \frac{P(A, B)}{P(A) P(B)}$$

$$PMI(A, B) = \log_2 \frac{P(A, B)}{P(A) P(B)}$$

Base of log doesn't really matter (we'll use base 2)

PMI(Green, White) =

 $PMI(A, B) = \log_{2} \frac{P(A, B)}{P(A) P(B)}$ Base of log doesn't really matter (we'll use base 2)  $MI(Green_M/bite) = \log_{2} \frac{200/5750}{P(A)}$ 

PMI(Green, White) =  $\log_2 \frac{200/5750}{(1400/5750)(2550/5750)}$ 

$$PMI(A, B) = \log_{2} \frac{P(A, B)}{P(A) P(B)}$$
  
Base of log doesn't really matter (we'll use base 2)  
$$PMI(Green, White) = \log_{2} \frac{200/5750}{(1400/5750)(2550/5750)} = -1.63... \text{ bits}$$

$$PMI(A, B) = \log_2 \frac{P(A, B)}{P(A) P(B)}$$

Base of log doesn't really matter (we'll use base 2)

 $PMI(Green, White) = \log_2 \frac{200/5750}{(1400/5750)(2550/5750)} = -1.63... \text{ bits}$ 

PMI(Green, Black) =

$$PMI(A, B) = \log_2 \frac{P(A, B)}{P(A) P(B)}$$

PMI(Green, White) = 
$$\log_2 \frac{200/5750}{(1400/5750)(2550/5750)} = -1.63...$$
 bits  
PMI(Green, Black) =  $\log_2 \frac{200/5750}{(1400/5750)(2550/5750)}$ 

$$PMI(A, B) = \log_2 \frac{P(A, B)}{P(A) P(B)}$$

$$PMI(Green, White) = \log_2 \frac{200/5750}{(1400/5750)(2550/5750)} = -1.63... \text{ bits}$$
$$PMI(Green, Black) = \log_2 \frac{200/5750}{(1400/5750)(2550/5750)} = -1.63... \text{ bits}$$

$$PMI(A, B) = \log_2 \frac{P(A, B)}{P(A) P(B)}$$

$$PMI(Green, White) = \log_2 \frac{200/5750}{(1400/5750)(2550/5750)} = -1.63... \text{ bits}$$
$$PMI(Green, Black) = \log_2 \frac{200/5750}{(1400/5750)(2550/5750)} = -1.63... \text{ bits}$$
$$PMI(White, Black) =$$

$$PMI(A, B) = \log_2 \frac{P(A, B)}{P(A) P(B)}$$

$$PMI(Green, White) = \log_2 \frac{200/5750}{(1400/5750)(2550/5750)} = -1.63... \text{ bits}$$

$$PMI(Green, Black) = \log_2 \frac{200/5750}{(1400/5750)(2550/5750)} = -1.63... \text{ bits}$$

$$PMI(White, Black) = \log_2 \frac{350/5750}{(2550/5750)(2550/5750)}$$

$$PMI(A, B) = \log_2 \frac{P(A, B)}{P(A) P(B)}$$

$$PMI(Green, White) = \log_2 \frac{200/5750}{(1400/5750)(2550/5750)} = -1.63... \text{ bits}$$

$$PMI(Green, Black) = \log_2 \frac{200/5750}{(1400/5750)(2550/5750)} = -1.63... \text{ bits}$$

$$PMI(White, Black) = \log_2 \frac{350/5750}{(2550/5750)(2550/5750)} = -1.69... \text{ bits}$$

$$PMI(A, B) = \log_2 \frac{P(A, B)}{P(A) P(B)}$$

$$PMI(Green, White) = \log_{2} \frac{200/5750}{(1400/5750)(2550/5750)} = -1.63... \text{ bits}$$

$$PMI(Green, Black) = \log_{2} \frac{200/5750}{(1400/5750)(2550/5750)} = -1.63... \text{ bits}$$

$$= -1.63... \text{ bits}$$

$$= -1.63... \text{ bits}$$

$$= -1.63... \text{ bits}$$

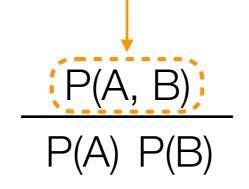
 $PMI(A, B) = \log_{2} \frac{P(A, B)}{P(A) P(B)}$ Higher PMI  $\rightarrow$ more surprising PMI(Green, White) =  $\log_{2} \frac{200/5750}{(1400/5750)(2550/5750)}$ = -1.63... bits PMI(Green, Black) =  $\log_{2} \frac{200/5750}{(1400/5750)(2550/5750)}$ = -1.63... bits = -1.63... bits = -1.63... bits = -1.63... bits = -1.63... bits

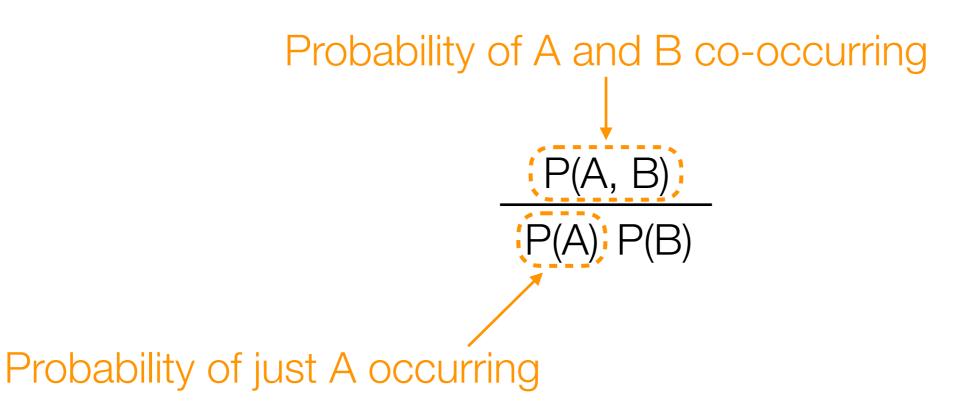
 $PMI(A, B) = \log_{2} \frac{P(A, B)}{P(A) P(B)}$ PMI can be positive or negative Higher PMI  $\rightarrow$ more surprising PMI (Green, White) =  $\log_{2} \frac{200/5750}{(1400/5750)(2550/5750)}$ PMI(Green, Black) =  $\log_{2} \frac{200/5750}{(1400/5750)(2550/5750)}$ PMI(White, Black) =  $\log_{2} \frac{350/5750}{(2550/5750)(2550/5750)}$ 

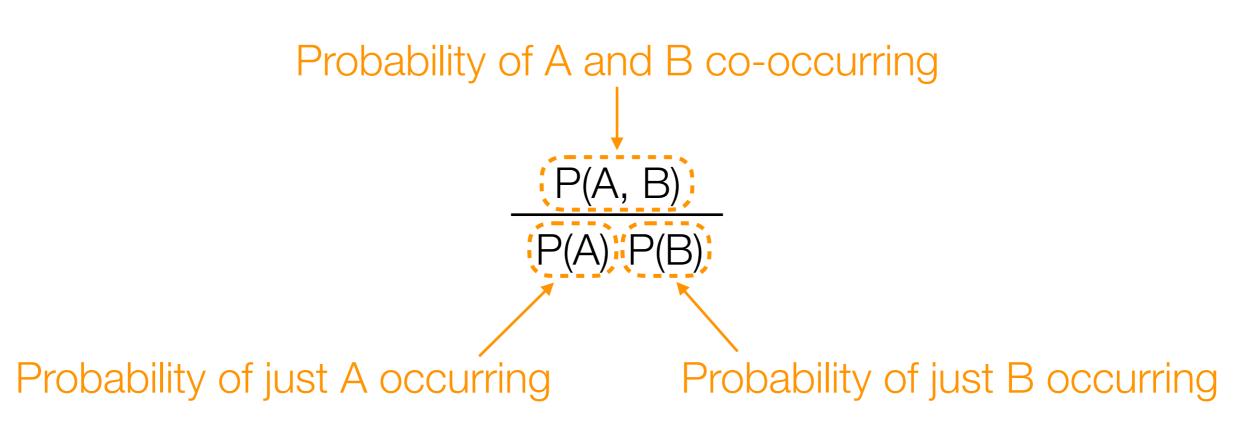
PMI can be positive  $PMI(A, B) = \log_2 \frac{P(A, B)}{P(A) P(B)}$ or negative Higher PMI → more surprising Base of log doesn't really matter (we'll use base 2) PMI(Green, White) =  $\log_2 \frac{200/5750}{(1400/5750)(2550/5750)} = -1.63...$  bits PMI(Green, Black) =  $\log_2 \frac{200/5750}{(1400/5750)(2550/5750)} = -1.63... bits$ PMI(White, Black) =  $\log_2 \frac{350/5750}{(2550/5750)(2550/5750)} = -1.69... bits$  $P(Green, Black) = \frac{200}{5750}$ P(Green, White) =  $\frac{200}{5750}$ P(White, Black) =  $\frac{350}{5750}$  $P(White) = \frac{2550}{5750}$  $P(Green) = \frac{1400}{5750}$  $P(Black) = \frac{2550}{5750}$ 

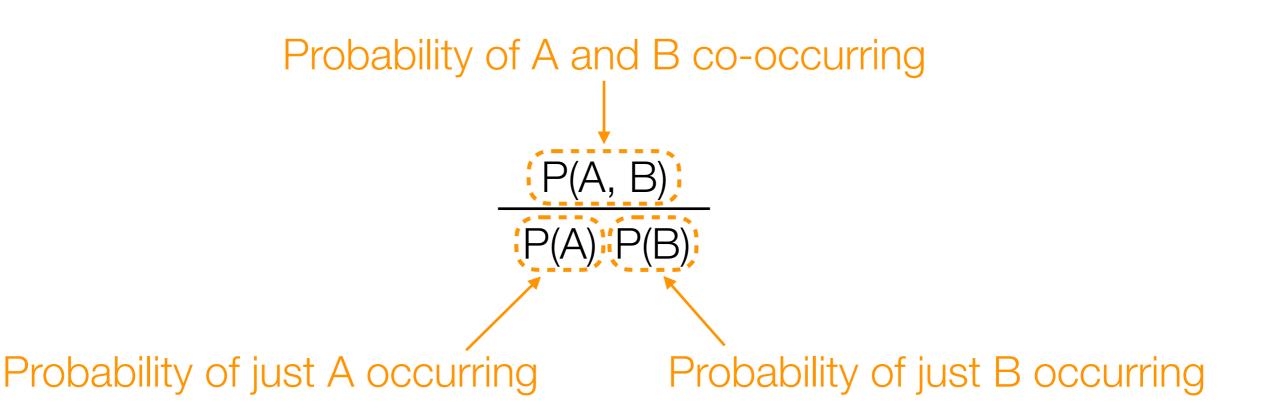
P(A, B) P(A) P(B)

Probability of A and B co-occurring





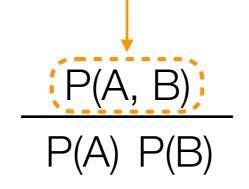




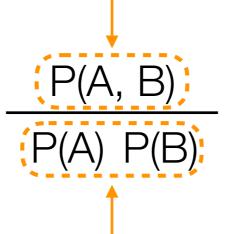
If A and B were "independent"

 $\rightarrow$  probability of A and B co-occurring would be P(A)P(B)

Probability of A and B co-occurring

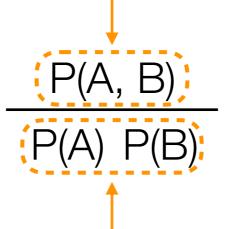


Probability of A and B co-occurring



Probability of A and B co-occurring if they were independent

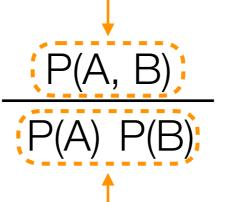
Probability of A and B co-occurring



Probability of A and B co-occurring if they were independent

PMI measures (the log of) a ratio that says how far A and B are from being independent

Probability of A and B co-occurring

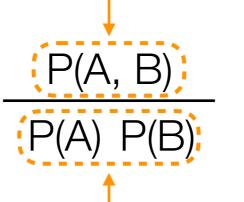


if equal to 1  $\rightarrow$  A, B are indep.

Probability of A and B co-occurring if they were independent

PMI measures (the log of) a ratio that says how far A and B are from being independent

Probability of A and B co-occurring



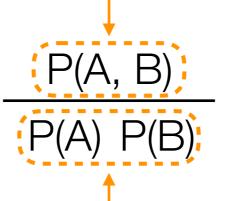
if equal to 1  $\rightarrow$  A, B are indep.

Probability of A and B co-occurring if they were independent

PMI measures (the log of) a ratio that says how far A and B are from being independent

There are *lots* of connections of information theory to prediction

Probability of A and B co-occurring



if equal to 1  $\rightarrow$  A, B are indep.

Probability of A and B co-occurring if they were independent

# PMI measures (the log of) a ratio that says how far A and B are from being independent

There are *lots* of connections of information theory to prediction Rough intuition: Something surprising ↔ less predictable ↔ more bits to store

### Looking at All Pairs of Outcomes

## Looking at All Pairs of Outcomes

 PMI measures how P(A, B) differs from P(A)P(B) using a log ratio

## Looking at All Pairs of Outcomes

- PMI measures how P(A, B) differs from P(A)P(B) using a log ratio
- Log ratio isn't the only way to compare!

- PMI measures how P(A, B) differs from P(A)P(B) using a log ratio
- Log ratio isn't the only way to compare!
- Another way to compare:

- PMI measures how P(A, B) differs from P(A)P(B) using a log ratio
- Log ratio isn't the only way to compare!
- Another way to compare:

[ P(A, B) - P(A) P(B) ]<sup>2</sup> P(A) P(B)

- PMI measures how P(A, B) differs from P(A)P(B) using a log ratio
- Log ratio isn't the only way to compare!
- Another way to compare:

$$\frac{[P(A, B) - P(A) P(B)]^2}{P(A) P(B)}$$
Phi-square = 
$$\sum_{A, B} \frac{[P(A, B) - P(A) P(B)]^2}{P(A) P(B)}$$

- PMI measures how P(A, B) differs from P(A)P(B) using a log ratio
- Log ratio isn't the only way to compare!
- Another way to compare:

$$\frac{[P(A, B) - P(A) P(B)]^2}{P(A) P(B)}$$
Phi-square = 
$$\sum_{A, B} \frac{[P(A, B) - P(A) P(B)]^2}{P(A) P(B)}$$

Chi-square =  $N \times Phi$ -square

- PMI measures how P(A, B) differs from P(A)P(B) using a log ratio
- Log ratio isn't the only way to compare!
- Another way to compare:

$$\frac{[P(A, B) - P(A) P(B)]^{2}}{P(A) P(B)}$$
Phi-square =  $\sum_{A, B} \frac{[P(A, B) - P(A) P(B)]^{2}}{P(A) P(B)}$ 
Measures how close all pairs of outcomes are close to being indep.

Chi-square =  $N \times Phi$ -square

 PMI measures how P(A, B) differs from P(A)P(B) using a log ratio

 $[P(A, B) - P(A) P(B)]^2$ 

- Log ratio isn't the only way to compare!
- Another way to compare:

Phi-square is between 0 and 1

P(A) P(B)Phi-square =  $\sum_{A, B} \frac{[P(A, B) - P(A) P(B)]^2}{P(A) P(B)}$ Measures how close all pairs of outcomes are close to being indep.

Chi-square =  $N \times Phi$ -square

- PMI measures how P(A, B) differs from P(A)P(B) using a log ratio
- Log ratio isn't the only way to compare!
- Another way to compare:

$$\frac{[P(A, B) - P(A) P(B)]^{2}}{P(A) P(B)}$$
between 0 and 1  

$$P(A) P(B)$$

$$O \rightarrow pairs are all indep.$$
Phi-square = 
$$\sum_{A, B} \frac{[P(A, B) - P(A) P(B)]^{2}}{P(A) P(B)}$$
Measures how close all pairs of outcomes are close to being indep.

Phi-square is

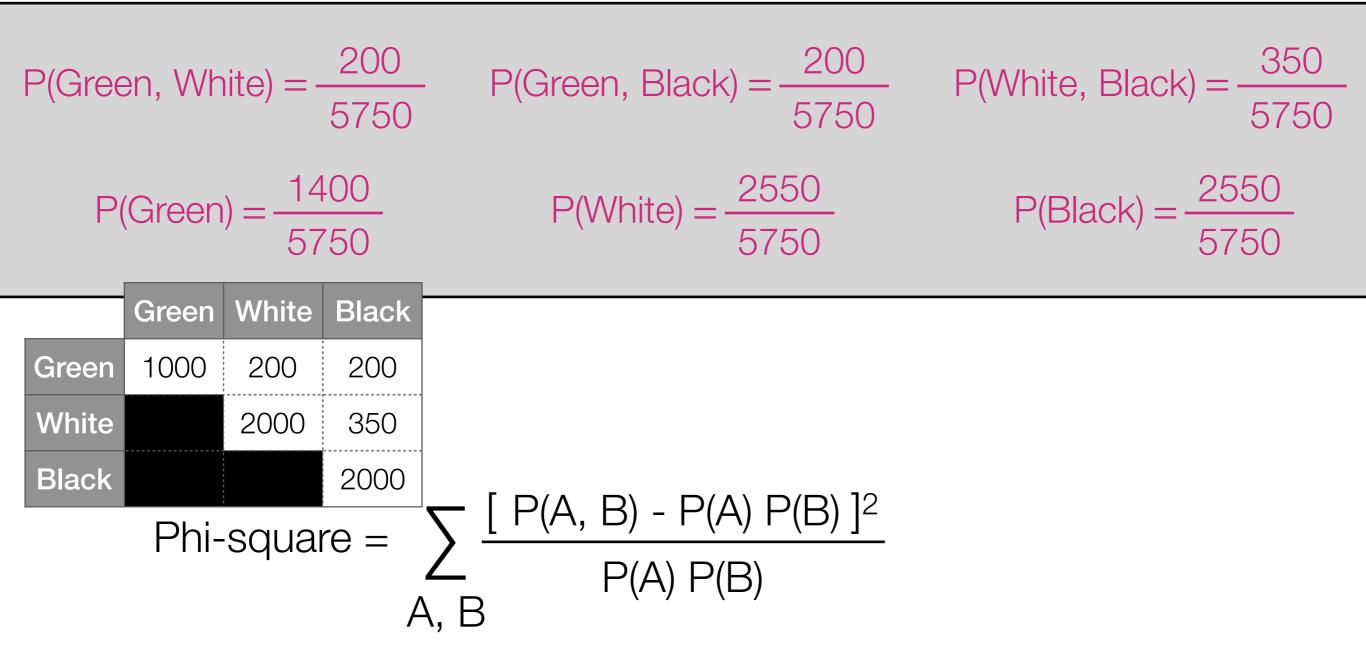
Chi-square =  $N \times Phi$ -square

Phi-square = 
$$\sum_{A, B} \frac{[P(A, B) - P(A) P(B)]^2}{P(A) P(B)}$$

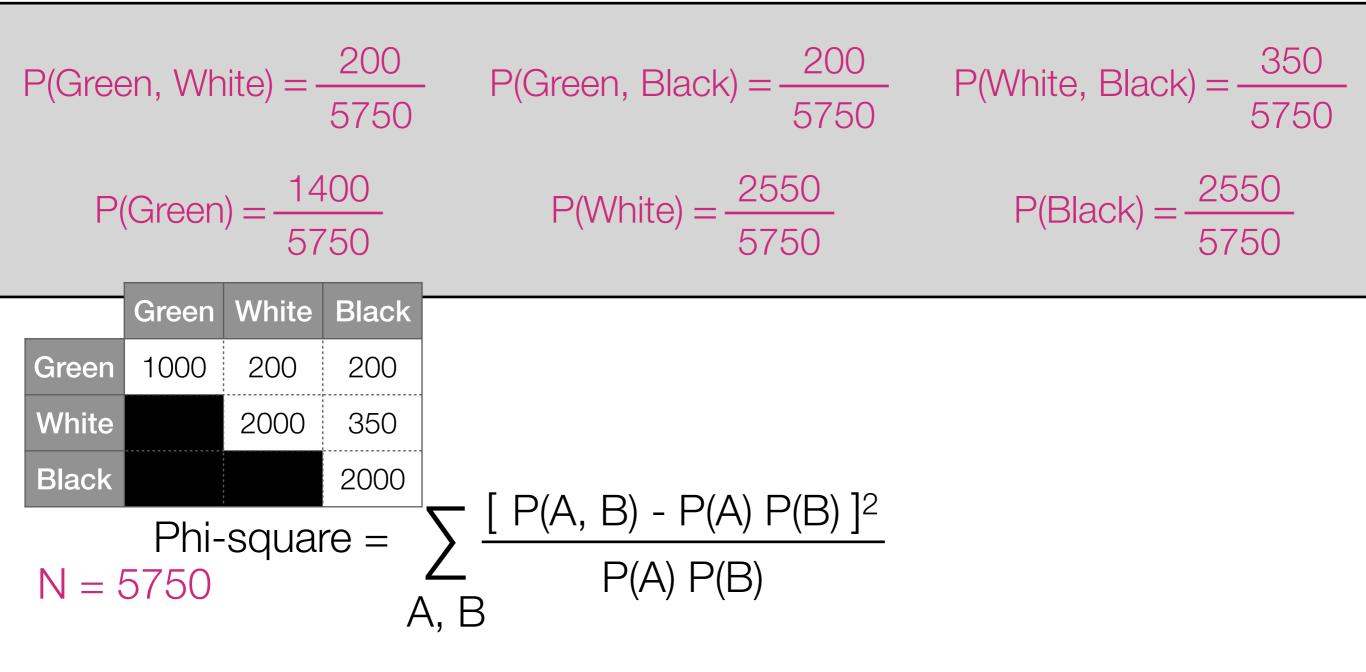
Chi-square =  $N \times Phi$ -square

Phi-square = 
$$\sum_{A, B} \frac{[P(A, B) - P(A) P(B)]^2}{P(A) P(B)}$$

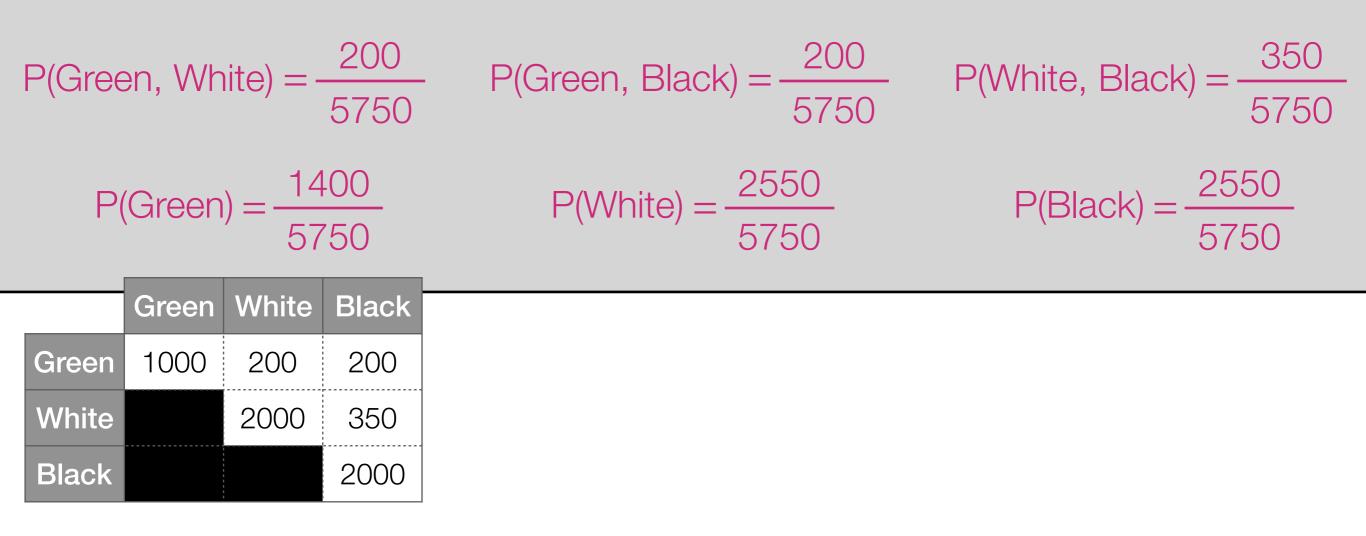
Chi-square =  $N \times Phi$ -square



Chi-square =  $N \times Phi$ -square

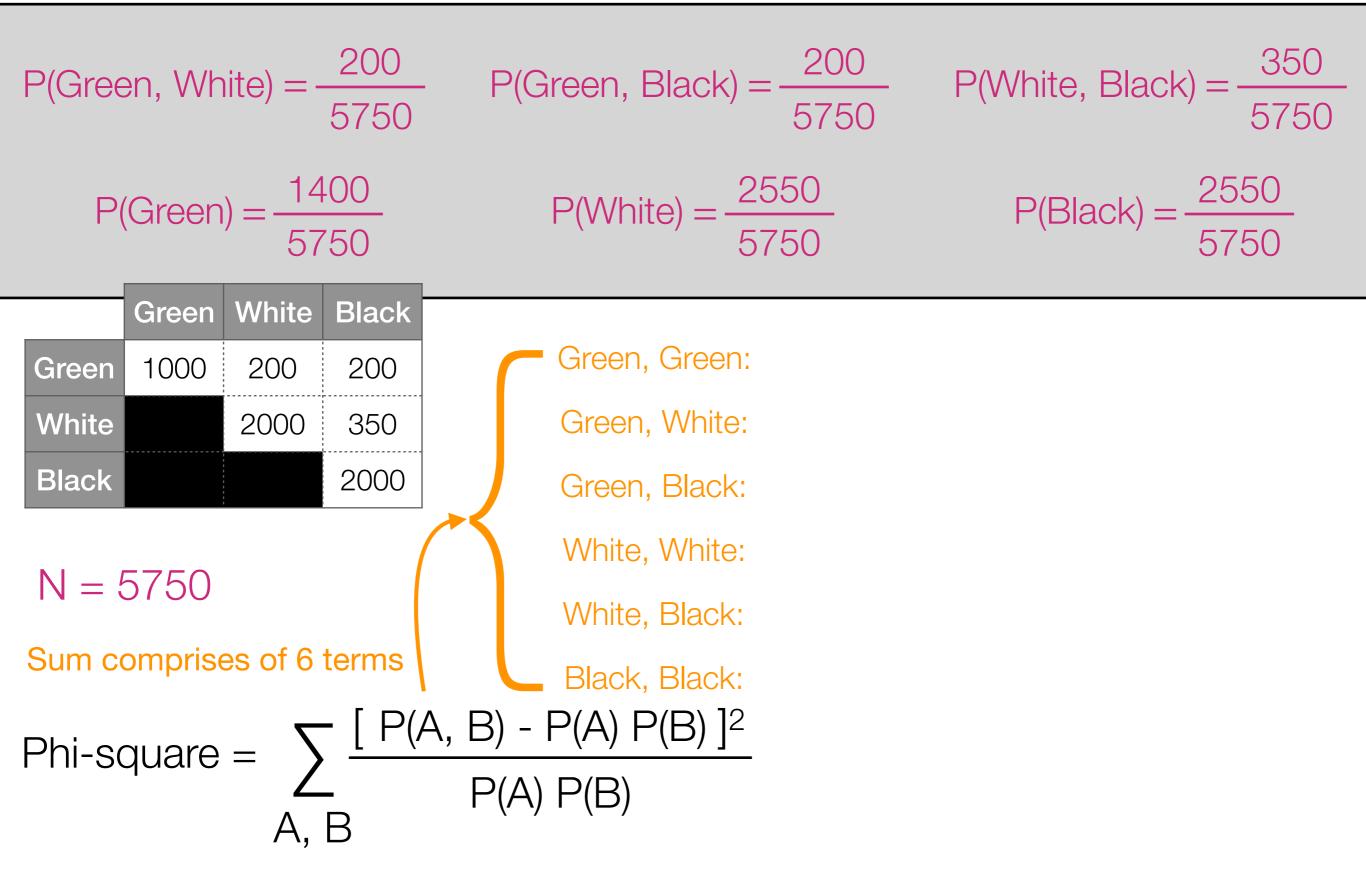


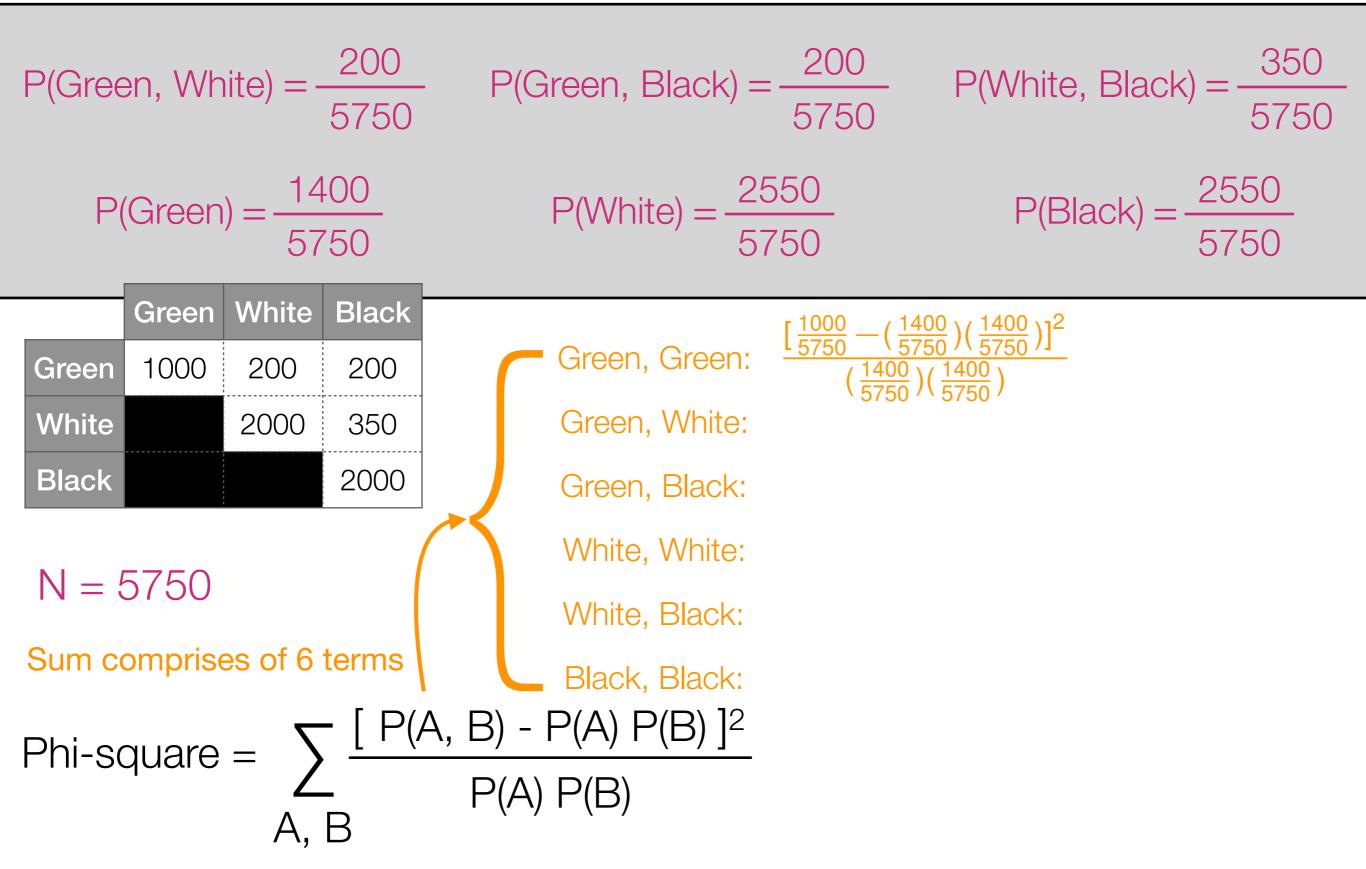
Chi-square =  $N \times Phi$ -square

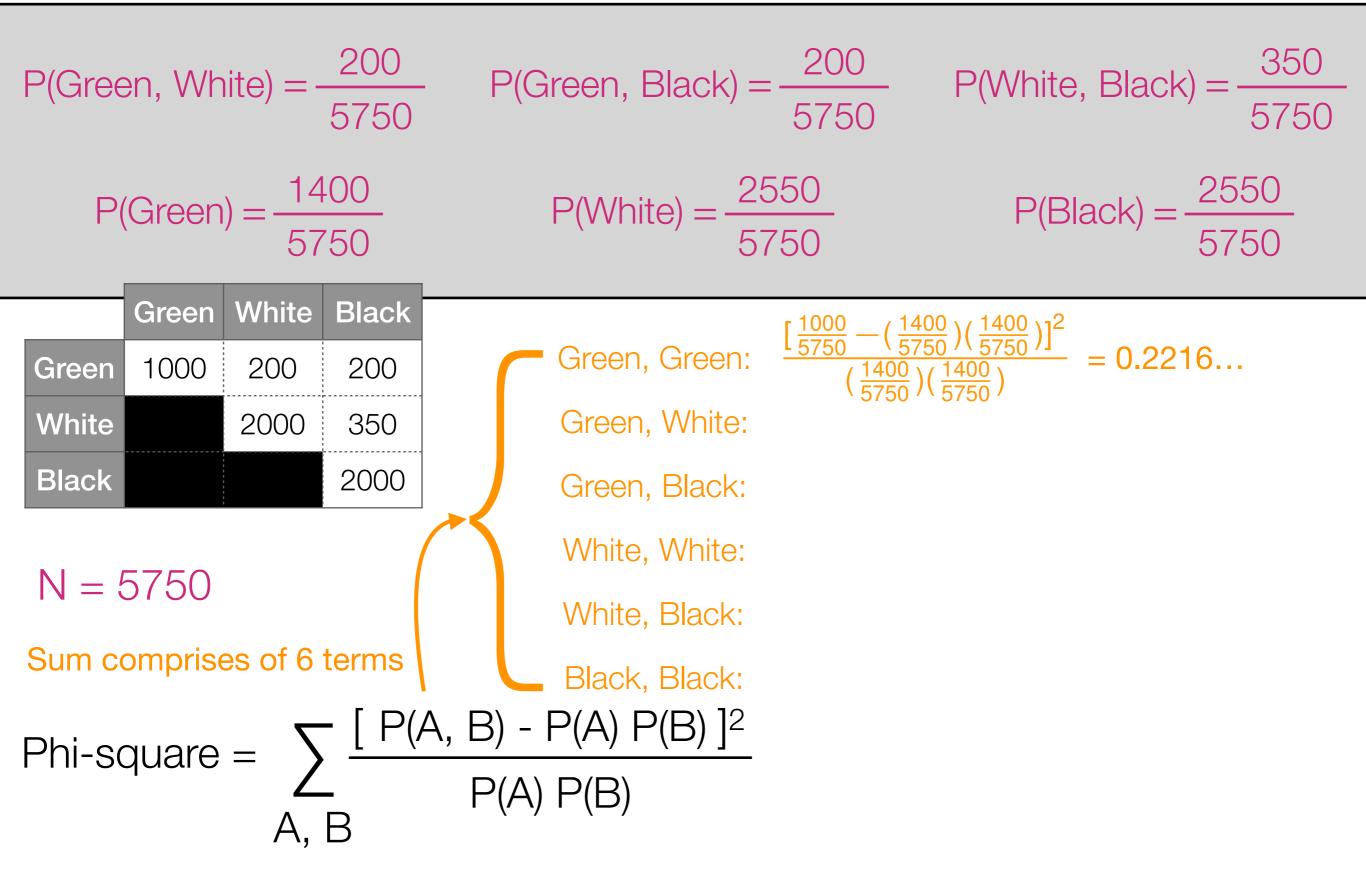


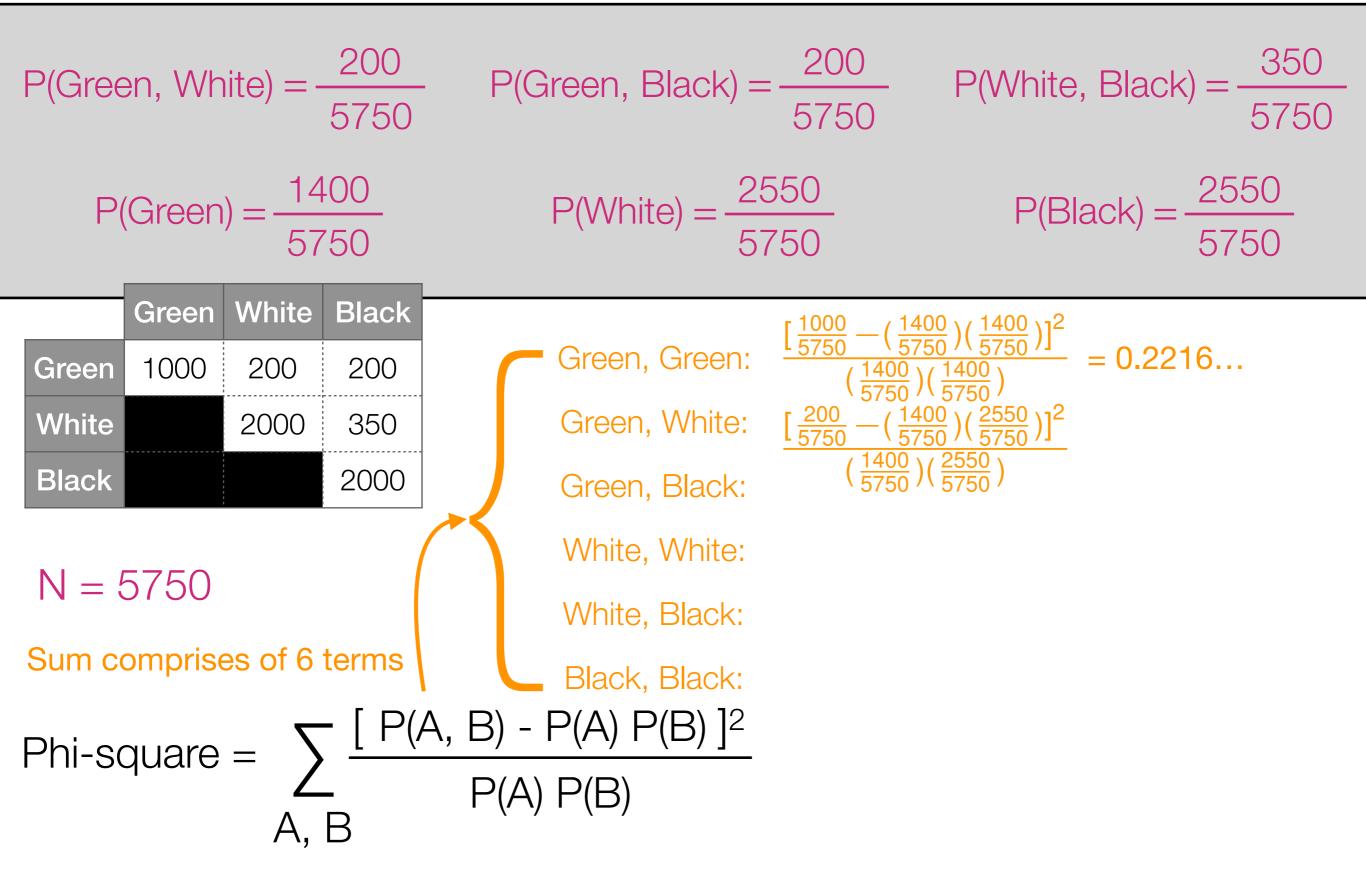
N = 5750

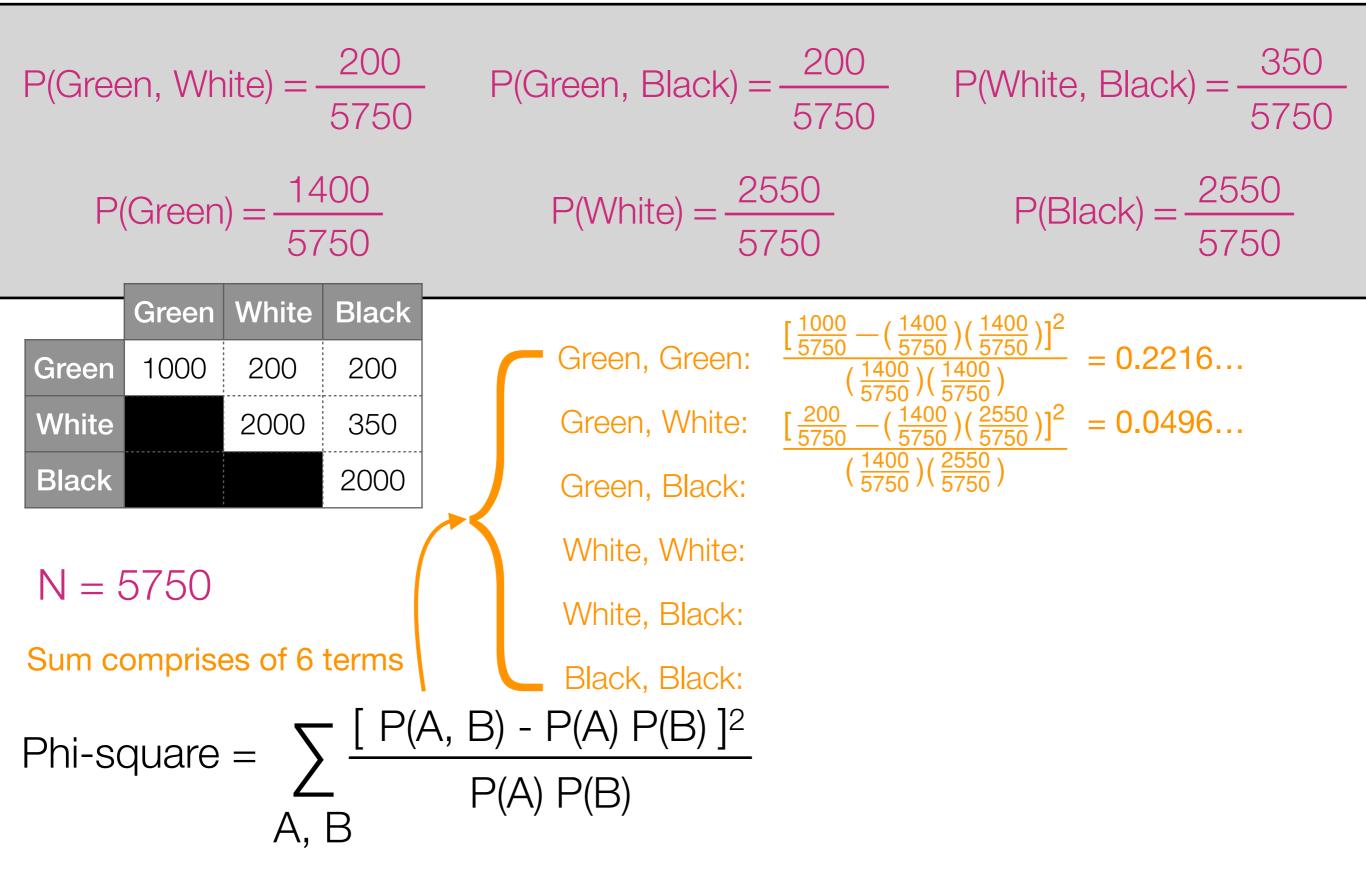
Phi-square = 
$$\sum_{A, B} \frac{[P(A, B) - P(A) P(B)]^2}{P(A) P(B)}$$

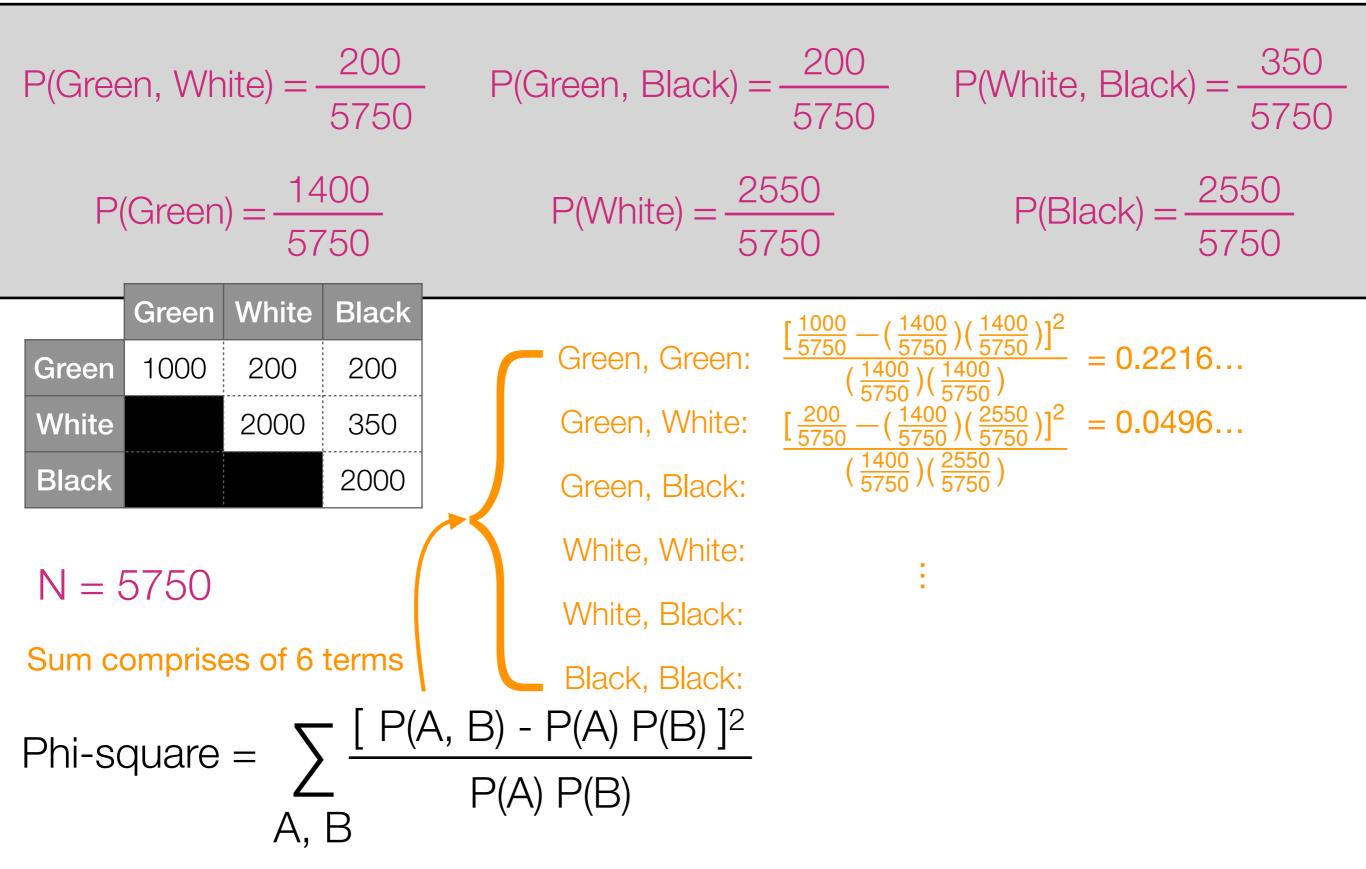


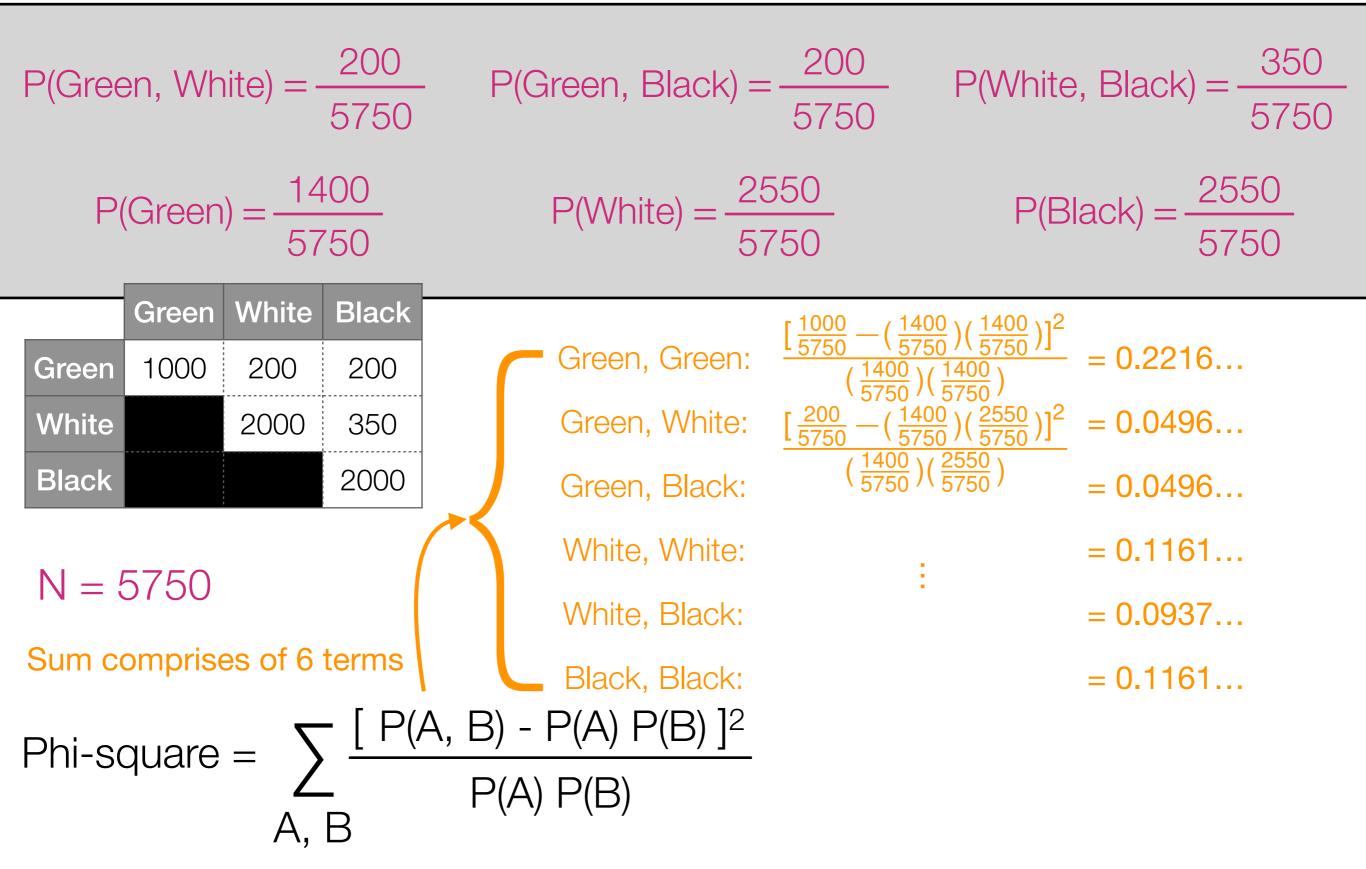


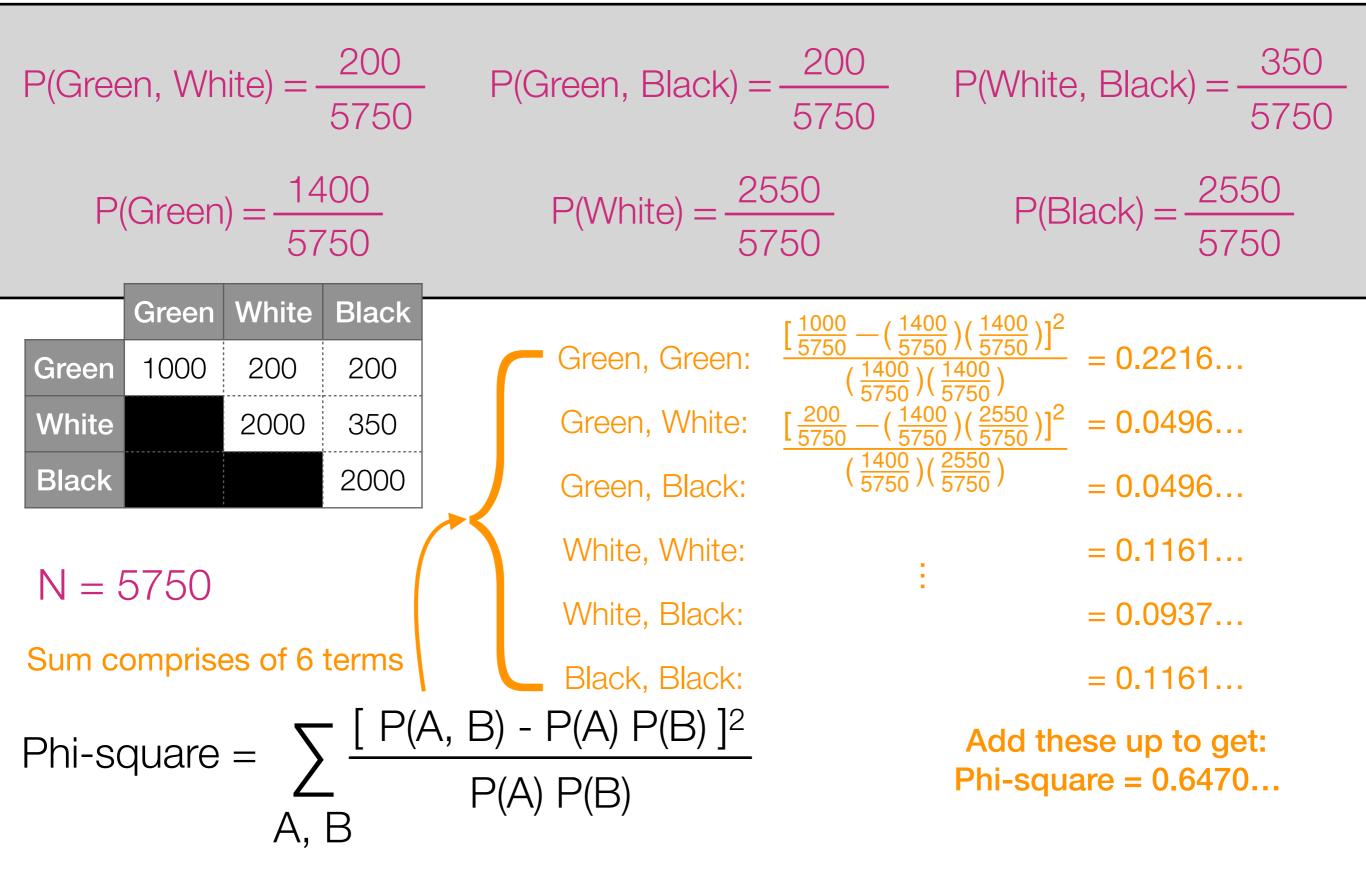














|           | Elon Musk | Tesla | Apple | Tim Cook |
|-----------|-----------|-------|-------|----------|
| Elon Musk |           | 300   | 1     | 4        |
| Tesla     | 300       |       | 5     | 1        |
| Apple     | 1         | 5     |       | 195      |
| Tim Cook  | 4         | 1     | 195   |          |

|           | Elon Musk | Tesla | Apple | Tim Cook |
|-----------|-----------|-------|-------|----------|
| Elon Musk |           | 300   | 1     | 4        |
| Tesla     | 300       |       | 5     | 1        |
| Apple     | 1         | 5     |       | 195      |
| Tim Cook  | 4         | 1     | 195   |          |

Often we know what kind of named entities are found

|           | Elon Musk | Tesla | Apple | Tim Cook |
|-----------|-----------|-------|-------|----------|
| Elon Musk |           | 300   | 1     | 4        |
| Tesla     | 300       |       | 5     | 1        |
| Apple     | 1         | 5     |       | 195      |
| Tim Cook  | 4         | 1     | 195   |          |

Often we know what kind of named entities are found

Example: Elon Musk and Tim Cook are people, Tesla and Apple are companies

|           | Elon Musk | Tesla | Apple | Tim Cook |
|-----------|-----------|-------|-------|----------|
| Elon Musk |           | 300   | 1     | 4        |
| Tesla     | 300       |       | 5     | 1        |
| Apple     | 1         | 5     |       | 195      |
| Tim Cook  | 4         | 1     | 195   |          |

Often we know what kind of named entities are found

Example: Elon Musk and Tim Cook are people, Tesla and Apple are companies

 $\rightarrow$  can ask what people are related to what companies

|           | Tesla | Apple |  |
|-----------|-------|-------|--|
| Elon Musk | 300   | 1     |  |
|           |       |       |  |
|           |       |       |  |
| Tim Cook  | 1     | 195   |  |

Often we know what kind of named entities are found

Example: Elon Musk and Tim Cook are people, Tesla and Apple are companies

→ can ask what people are related to what companies

|           | Tesla | Apple |
|-----------|-------|-------|
| Elon Musk | 300   | 1     |
| Tim Cook  | 1     | 195   |

|           | Tesla | Apple |
|-----------|-------|-------|
| Elon Musk | 300   | 1     |
| Tim Cook  | 1     | 195   |

PMI, phi-square, chi-square calculations are done the same way

|           | Tesla | Apple |
|-----------|-------|-------|
| Elon Musk | 300   | 1     |
| Tim Cook  | 1     | 195   |

PMI, phi-square, chi-square calculations are done the same way Main things to calculate first:

|           | Tesla | Apple |
|-----------|-------|-------|
| Elon Musk | 300   | 1     |
| Tim Cook  | 1     | 195   |

PMI, phi-square, chi-square calculations are done the same way<br/>Main things to calculate first:P(Elon Musk, Tesla)P(Elon Musk)P(Elon Musk, Apple)P(Tim Cook)P(Tim Cook, Tesla)P(Tesla)P(Tim Cook, Apple)P(Apple)

|           | Tesla | Apple |
|-----------|-------|-------|
| Elon Musk | 300   | 1     |
| Tim Cook  | 1     | 195   |

PMI, phi-square, chi-square calculations are done the same way

Main things to calculate first:

P(Elon Musk, Tesla) P(Elon Musk)

P(Elon Musk, Apple)

e) P(Tim Cook) ) P(Tesla)

P(Tim Cook, Tesla)

P(Tim Cook, Apple)

P(Apple)

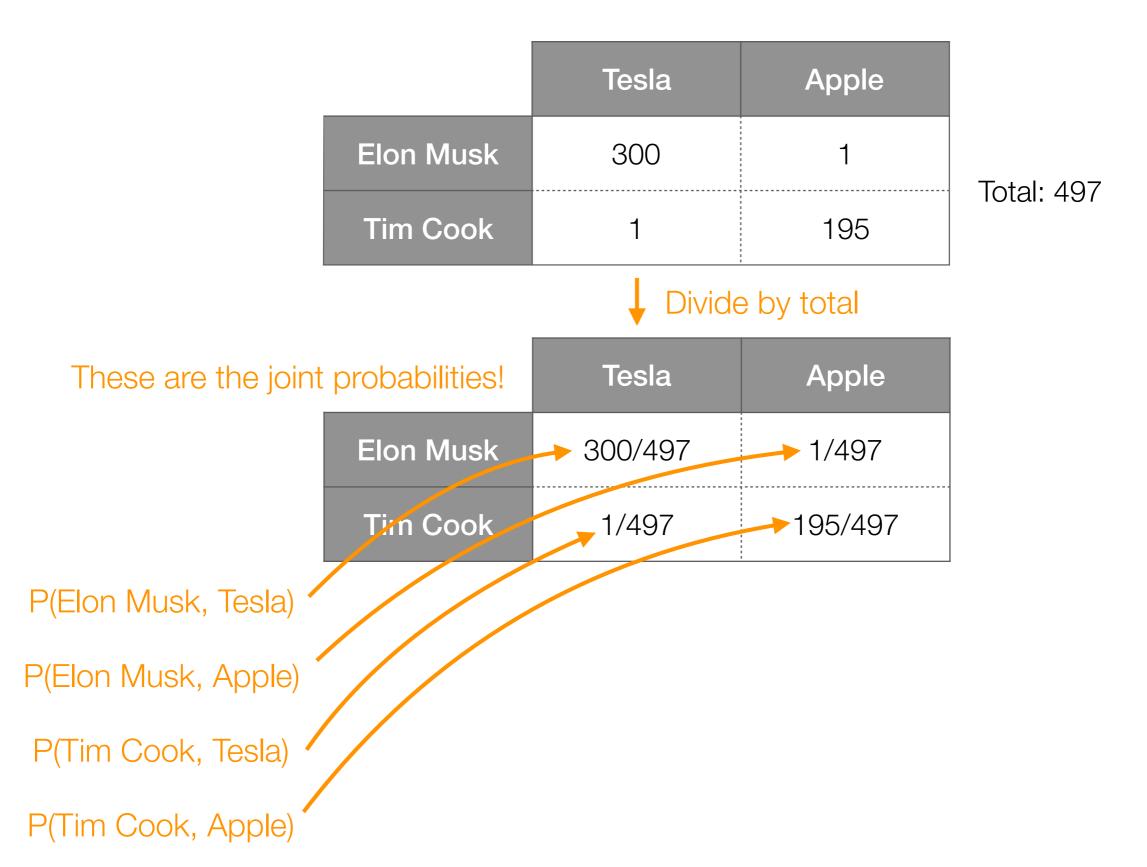
The math here is actually a bit easier to think about because the rows and columns aren't indexing the same items

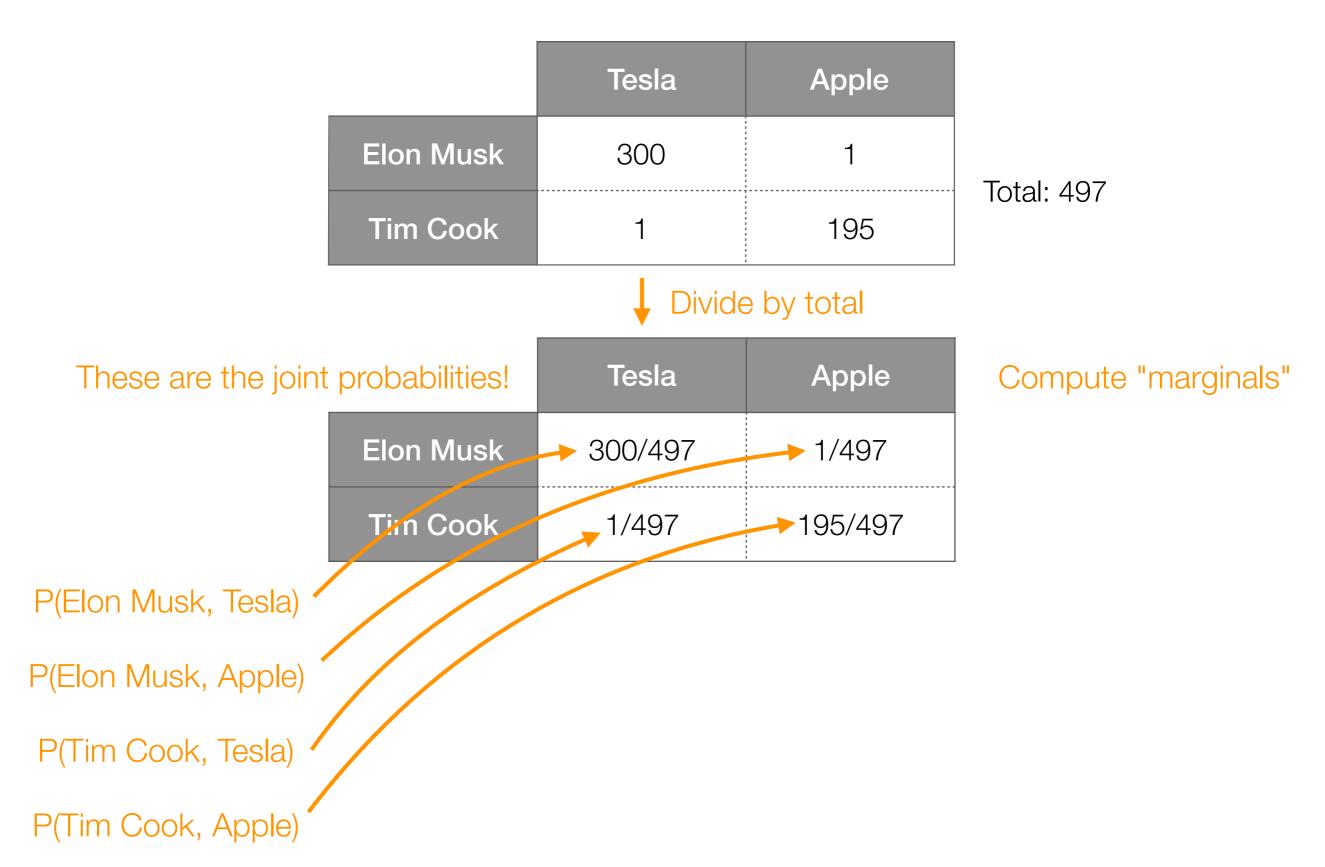
|           | Tesla | Apple |
|-----------|-------|-------|
| Elon Musk | 300   | 1     |
| Tim Cook  | 1     | 195   |

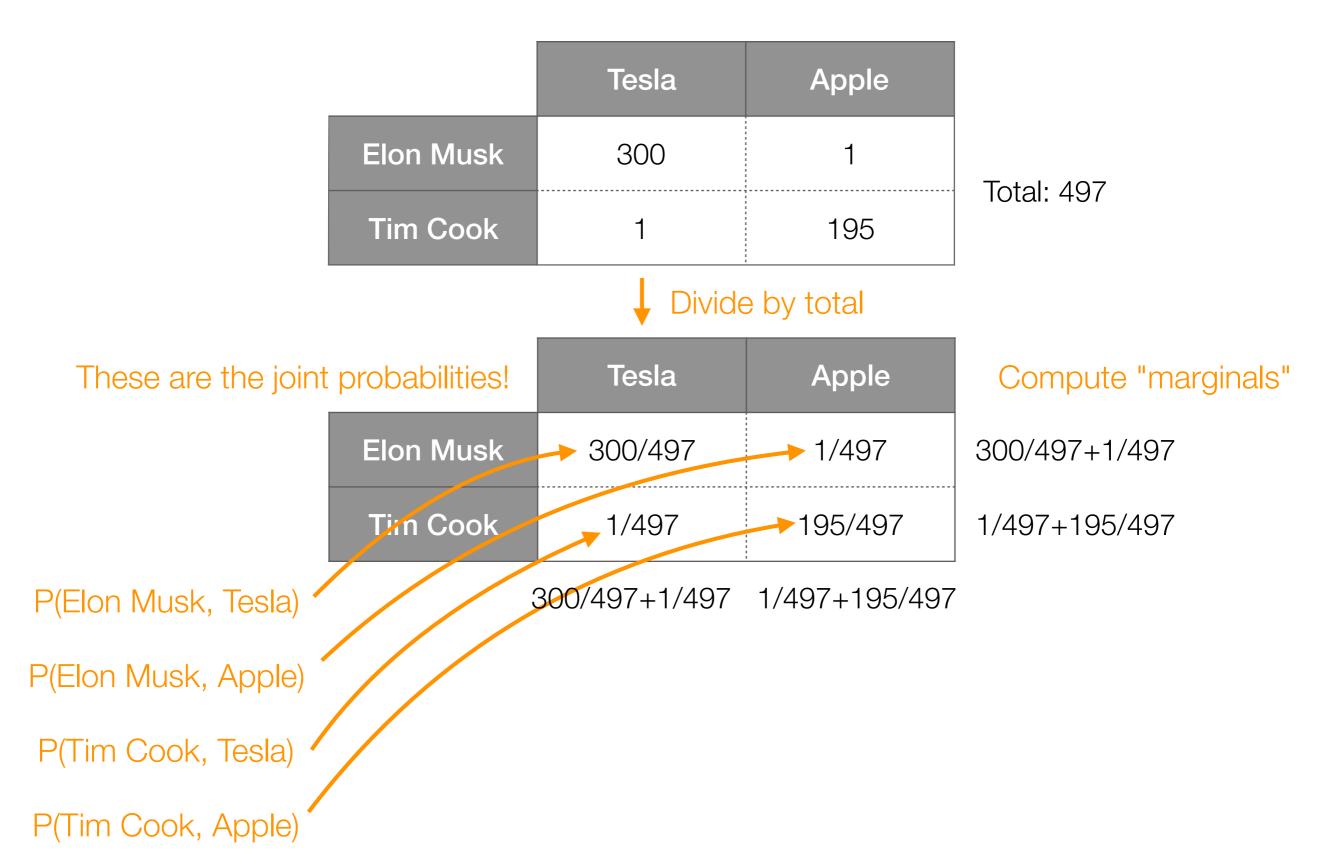
|           | Tesla | Apple |            |
|-----------|-------|-------|------------|
| Elon Musk | 300   | 1     | Total, 107 |
| Tim Cook  | 1     | 195   | Total: 497 |

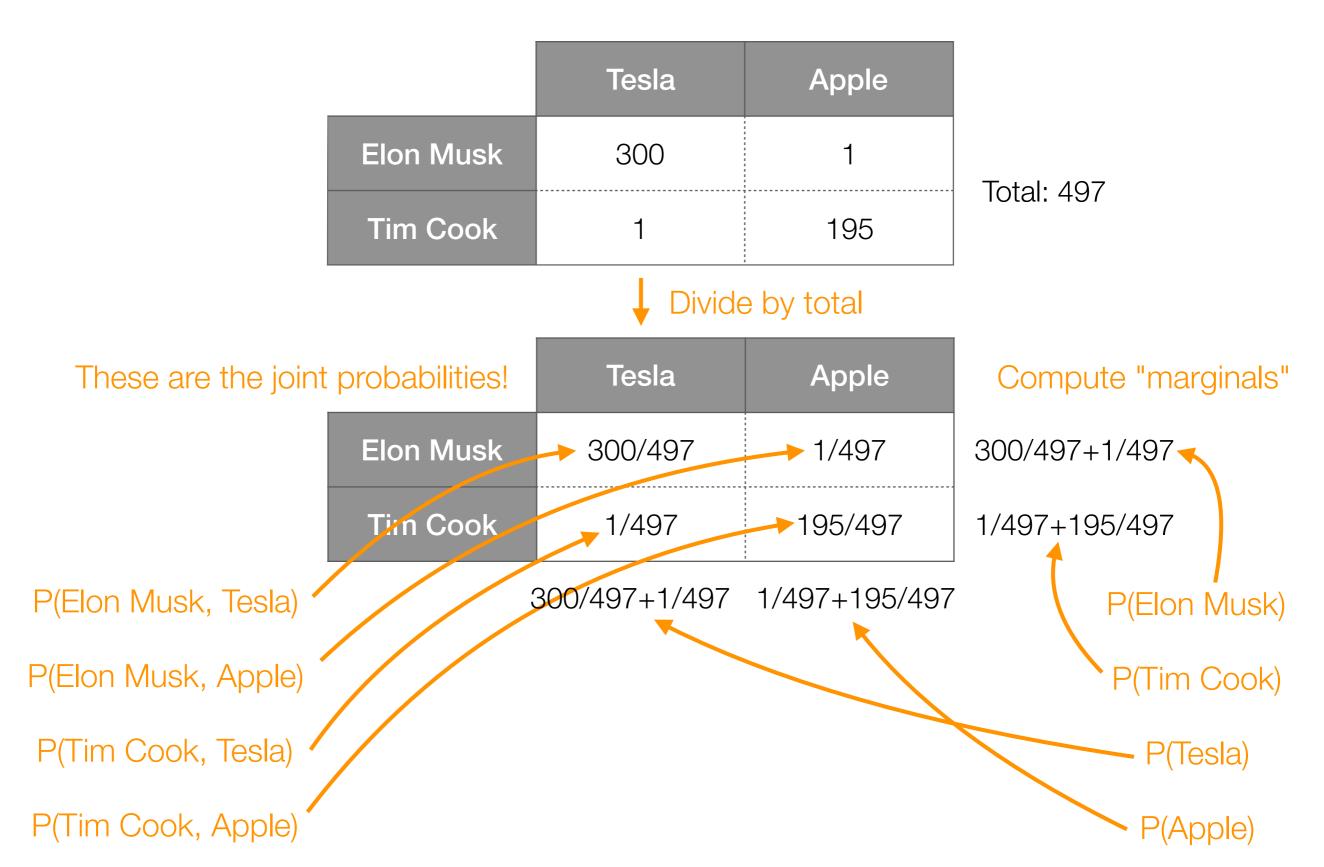
|           | Tesla   | Apple   |            |  |
|-----------|---------|---------|------------|--|
| Elon Musk | 300     | 1       | Total: 497 |  |
| Tim Cook  | 1       | 195     | 10tal. 497 |  |
|           | Uivide  |         |            |  |
|           | Tesla   | Apple   |            |  |
| Elon Musk | 300/497 | 1/497   |            |  |
| Tim Cook  | 1/497   | 195/497 |            |  |

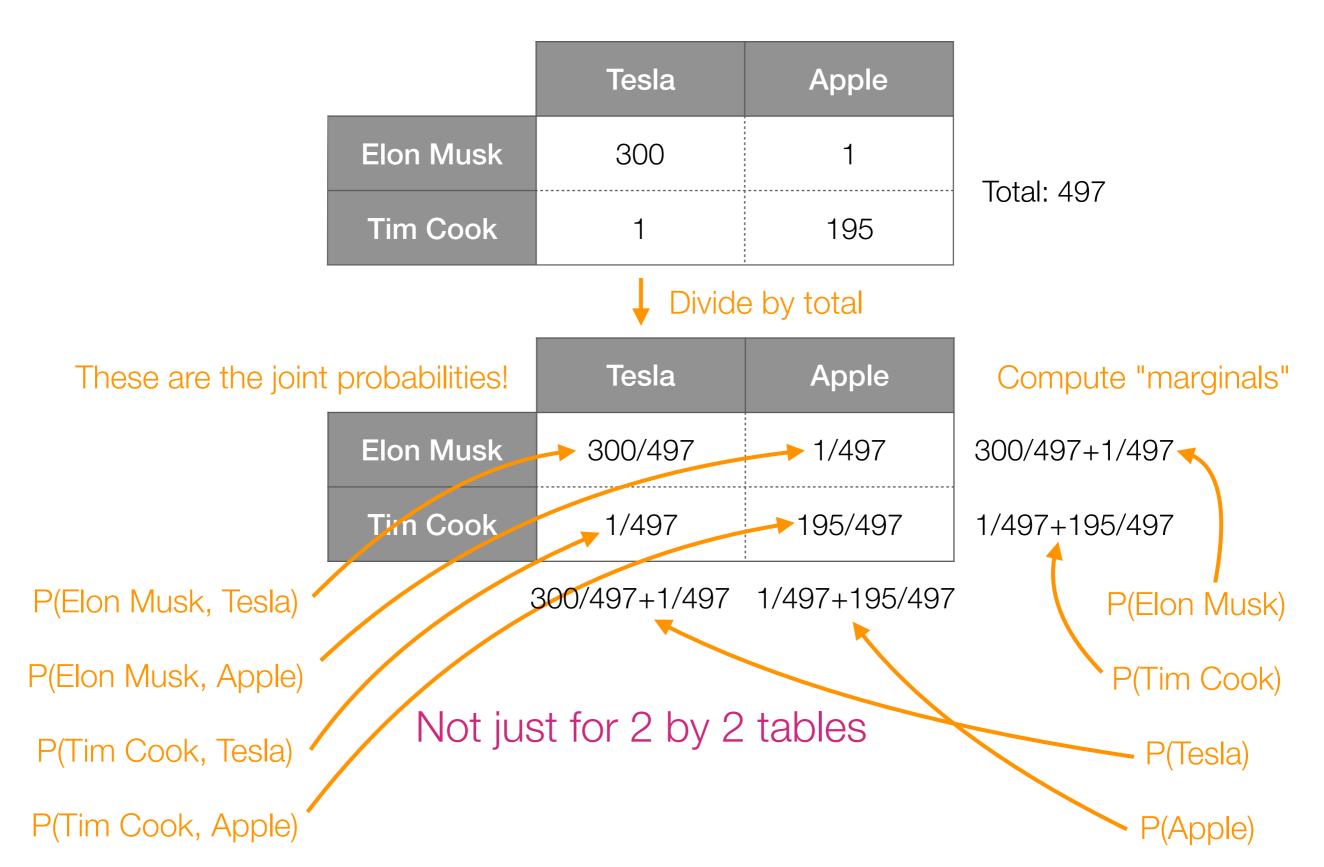
|                                    |           | Tesla   | Apple   |            |
|------------------------------------|-----------|---------|---------|------------|
|                                    | Elon Musk | 300     | 1       | Total: 497 |
|                                    | Tim Cook  | 1       | 195     | 10tal. 497 |
|                                    |           | Uivide  |         |            |
| These are the joint probabilities! |           | Tesla   | Apple   |            |
|                                    | Elon Musk | 300/497 | 1/497   |            |
|                                    | Tim Cook  | 1/497   | 195/497 |            |

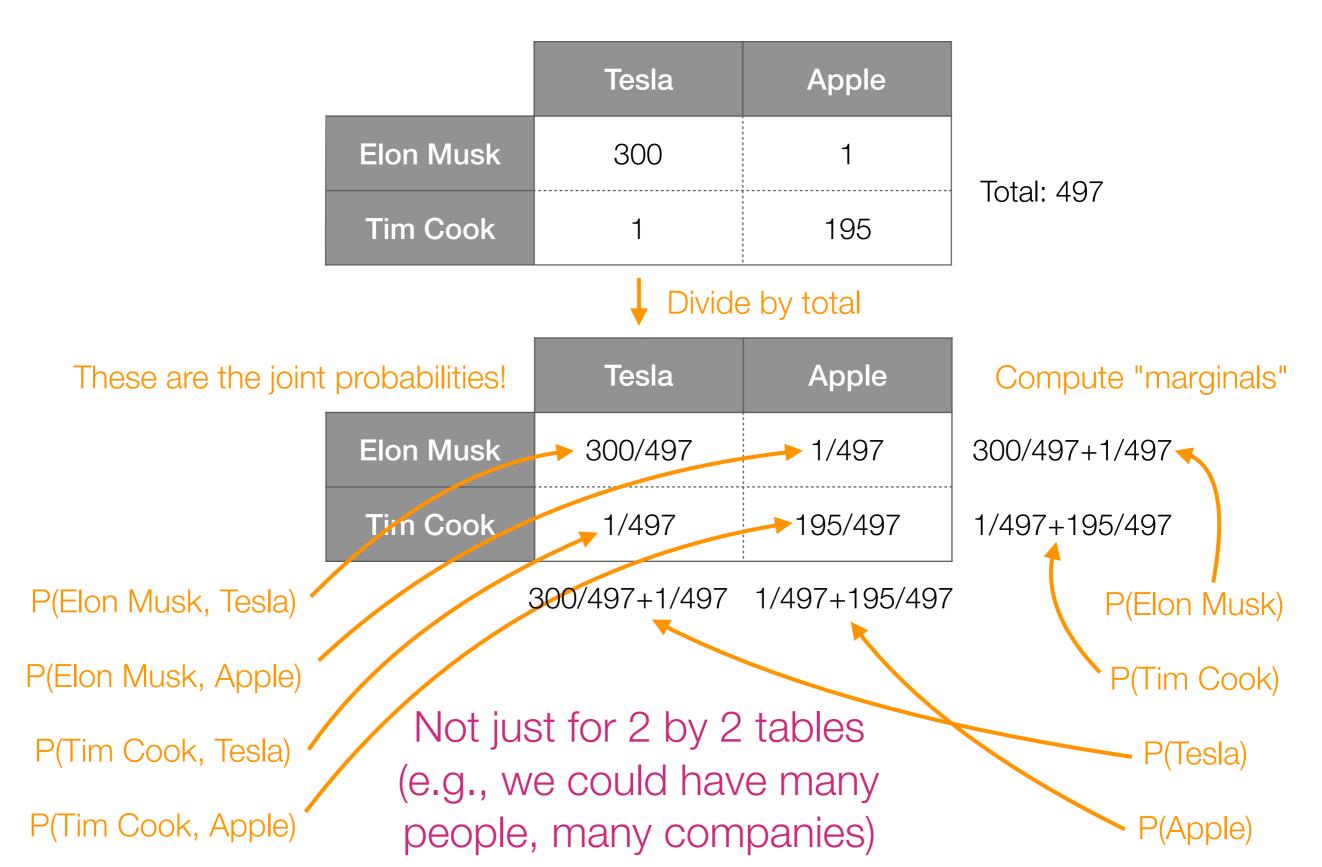












• Joint probability P(A, B) can be poor indicator of whether A and B co-occurring is "interesting"

- Joint probability P(A, B) can be poor indicator of whether A and B co-occurring is "interesting"
- Find interesting relationships between pairs of items by looking at PMI

- Joint probability P(A, B) can be poor indicator of whether A and B co-occurring is "interesting"
- Find interesting relationships between pairs of items by looking at PMI
  - Intuition: "Interesting" co-occurring events should occur more frequently than if they were to co-occur independently

- Joint probability P(A, B) can be poor indicator of whether A and B co-occurring is "interesting"
- Find interesting relationships between pairs of items by looking at PMI
  - Intuition: "Interesting" co-occurring events should occur more frequently than if they were to co-occur independently
- In practice: some times it is helpful to generalize PMI and look instead at

$$\mathsf{PMI}_{\rho}(\mathsf{A}, \mathsf{B}) = \mathsf{log}_2 \frac{\mathsf{P}(\mathsf{A}, \mathsf{B})^{\rho}}{\mathsf{P}(\mathsf{A}) \mathsf{P}(\mathsf{B})}$$

- Joint probability P(A, B) can be poor indicator of whether A and B co-occurring is "interesting"
- Find interesting relationships between pairs of items by looking at PMI
  - Intuition: "Interesting" co-occurring events should occur more frequently than if they were to co-occur independently
- In practice: some times it is helpful to generalize PMI and look instead at

$$\mathsf{PMI}_{\rho}(\mathsf{A}, \mathsf{B}) = \mathsf{log}_2 \frac{\mathsf{P}(\mathsf{A}, \mathsf{B})^{\rho}}{\mathsf{P}(\mathsf{A}) \mathsf{P}(\mathsf{B})}$$

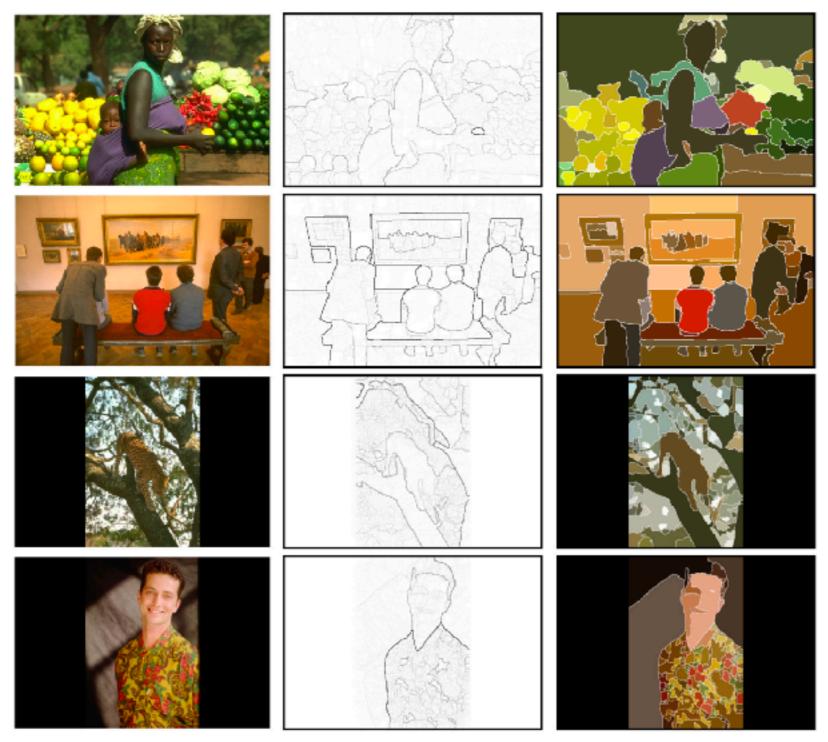
Tune parameter

 $\rho > 0$ 

- Joint probability P(A, B) can be poor indicator of whether A and B co-occurring is "interesting"
- Find interesting relationships between pairs of items by looking at PMI
  - Intuition: "Interesting" co-occurring events should occur more frequently than if they were to co-occur independently
- In practice: some times it is helpful to generalize PMI and look instead at

 $PMI_{\rho}(A, B) = \log_{2} \frac{P(A, B)^{\rho}}{P(A) P(B)}$ Tune parameter  $\rho > 0$ (we'll talk about parameter tuning later in the course)

#### Example Application of PMI: Image Segmentation



Phillip Isola, Daniel Zoran, Dilip Krishnan, and Edward H. Adelson. Crisp boundary detection using pointwise mutual information. ECCV 2014.

#### Example Application of PMI: Word Embeddings

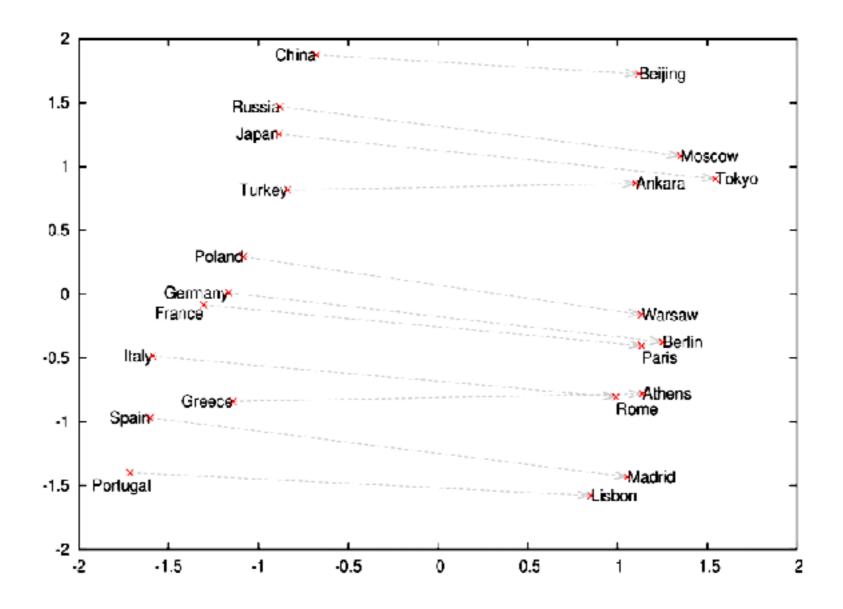


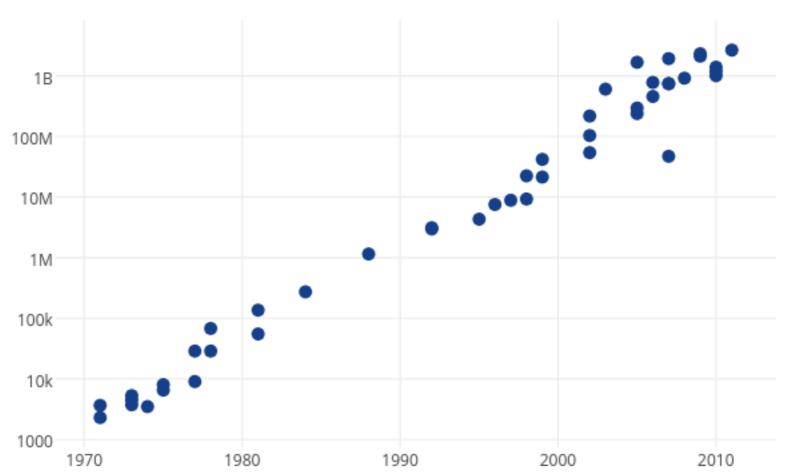
Image source: https://deeplearning4j.org/img/countries\_capitals.png

Omer Levy and Yoav Goldberg. Neural word embeddings as implicit matrix factorization. NIPS 2014.

• So far, looked at relationships between *discrete* outcomes

- So far, looked at relationships between *discrete* outcomes
- For pair of *continuous* outcomes, use a **scatter plot**

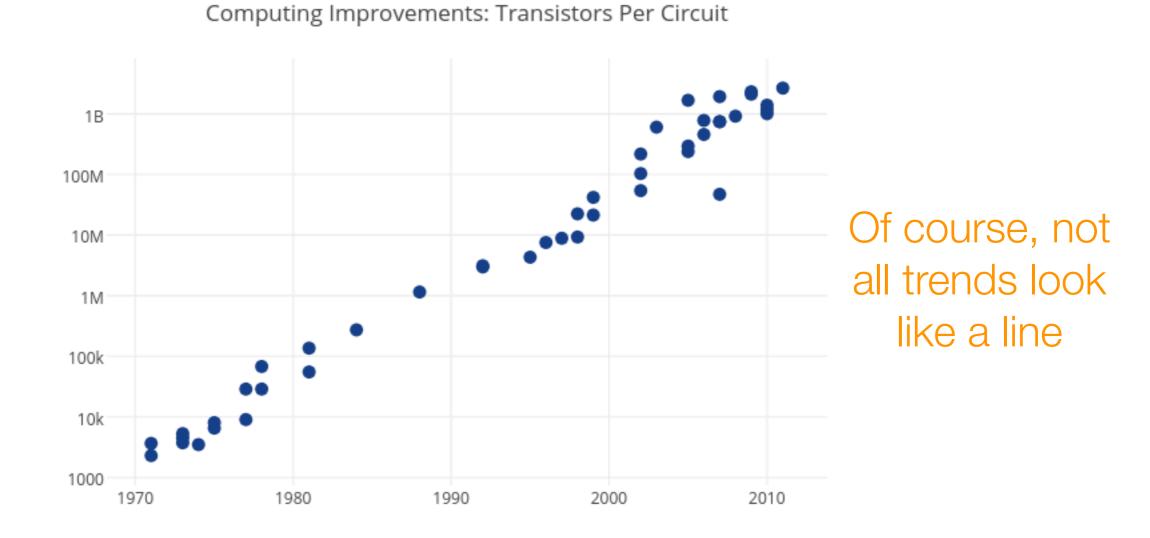
- So far, looked at relationships between *discrete* outcomes
- For pair of *continuous* outcomes, use a **scatter plot**



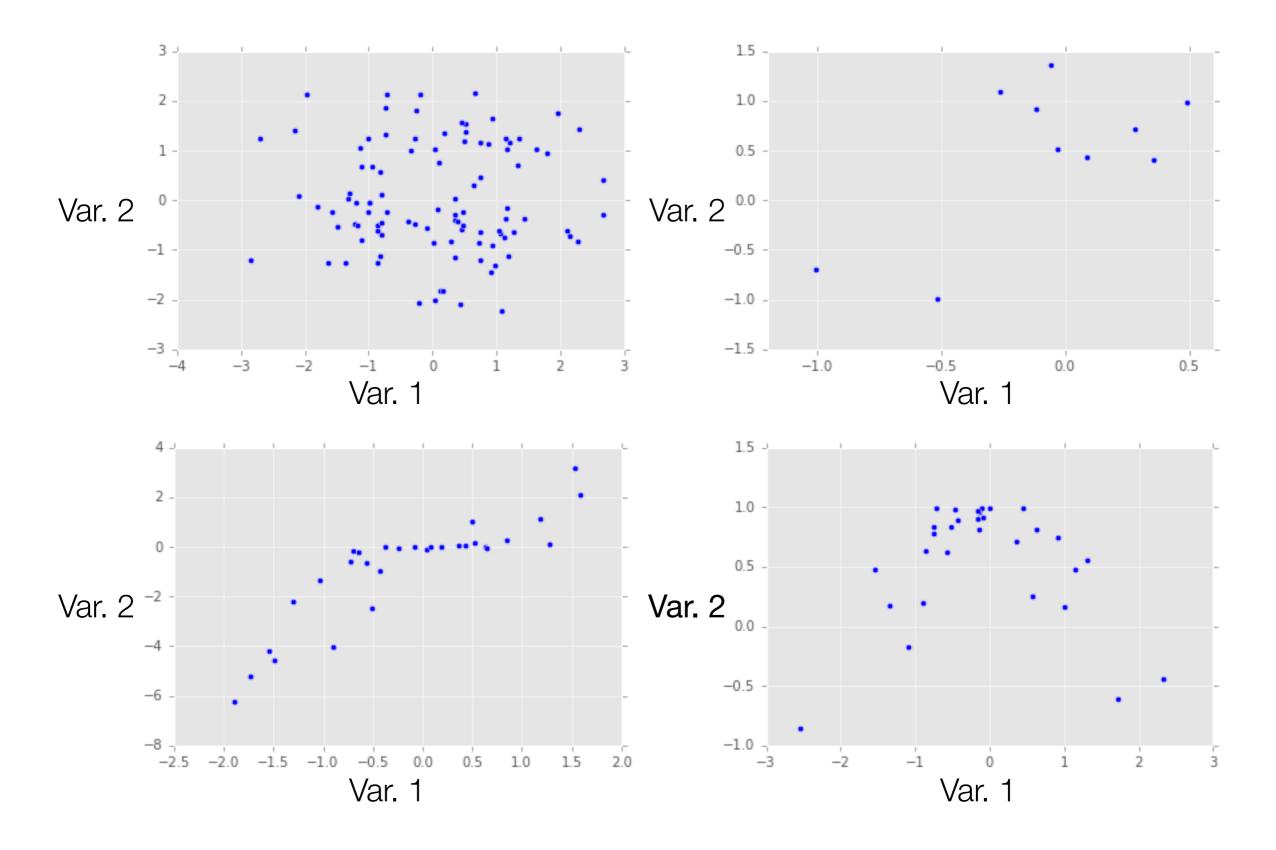
Computing Improvements: Transistors Per Circuit

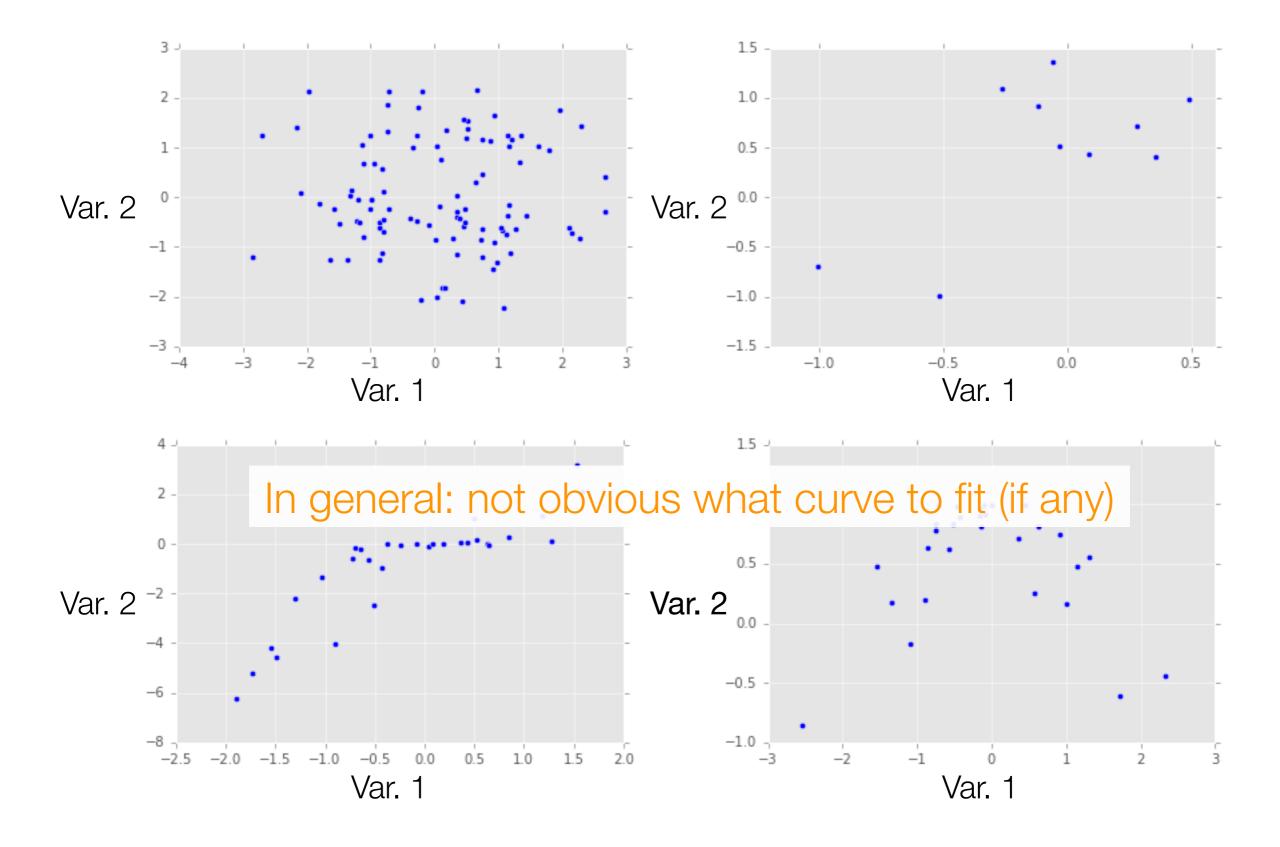
https://plot.ly/~MattSundquist/5405.png

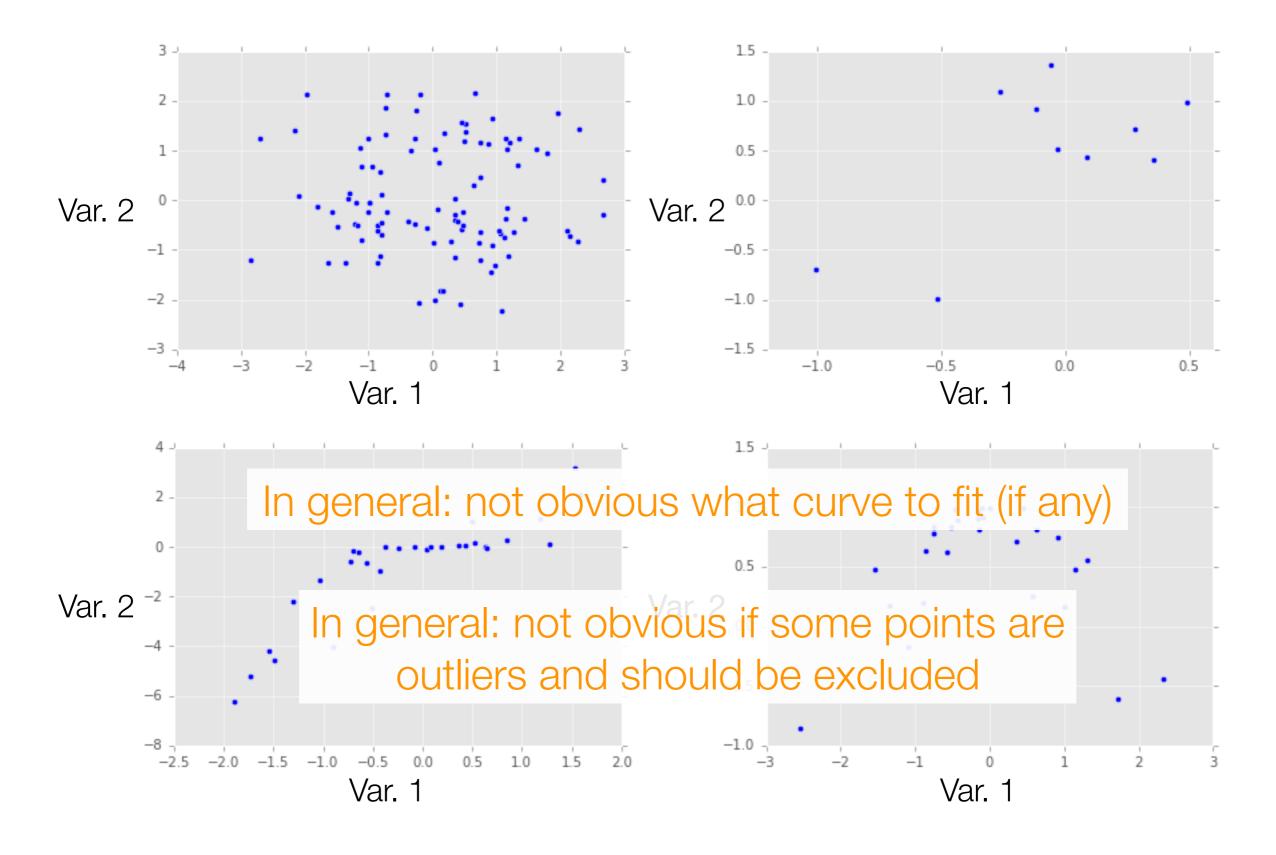
- So far, looked at relationships between *discrete* outcomes
- For pair of *continuous* outcomes, use a **scatter plot**

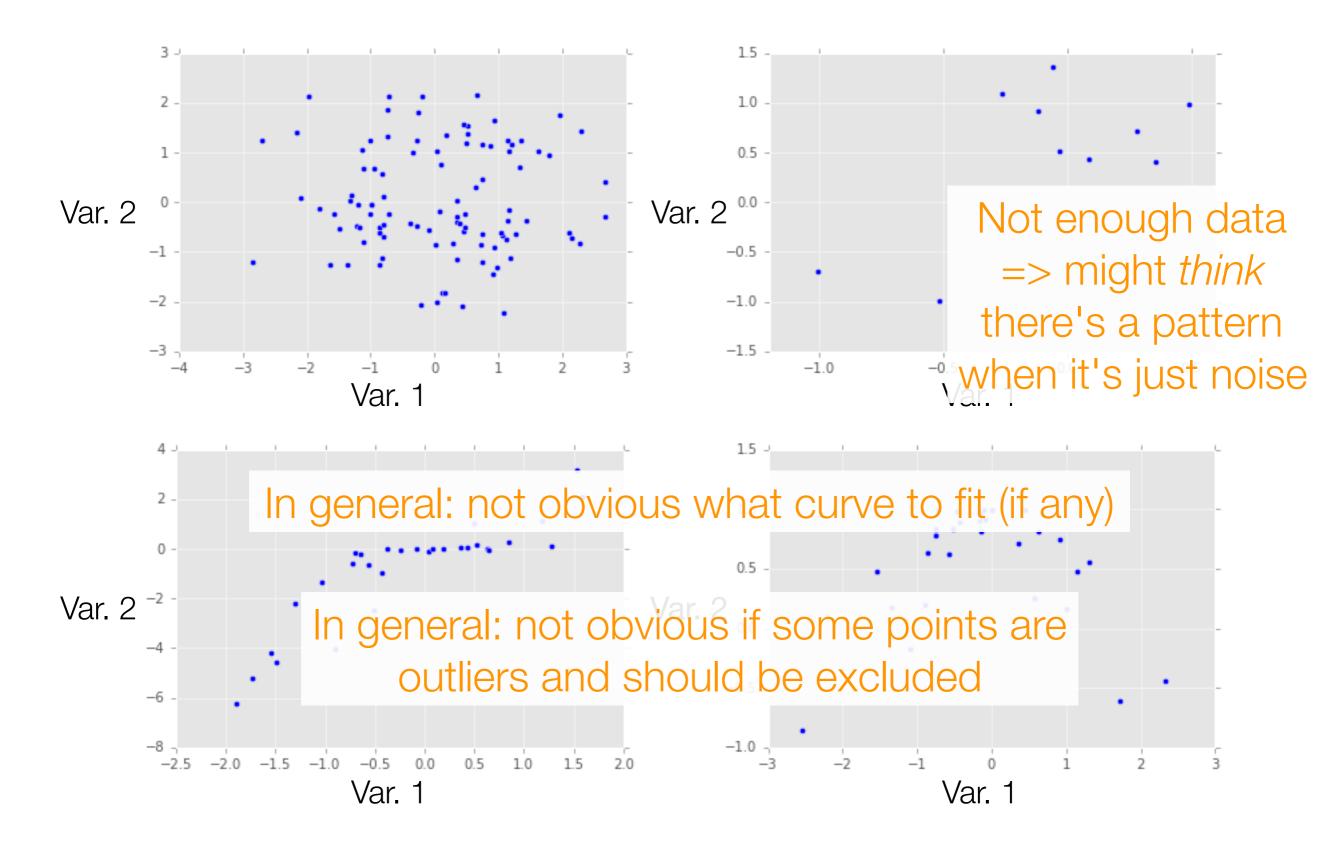


https://plot.ly/~MattSundquist/5405.png

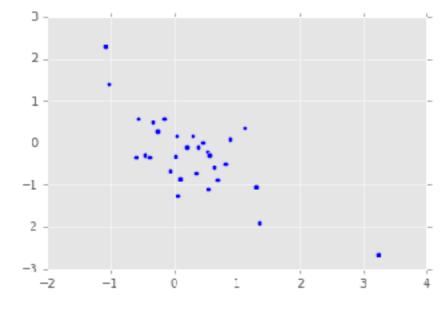




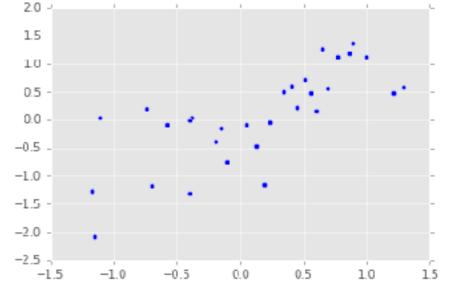




#### Correlation



5

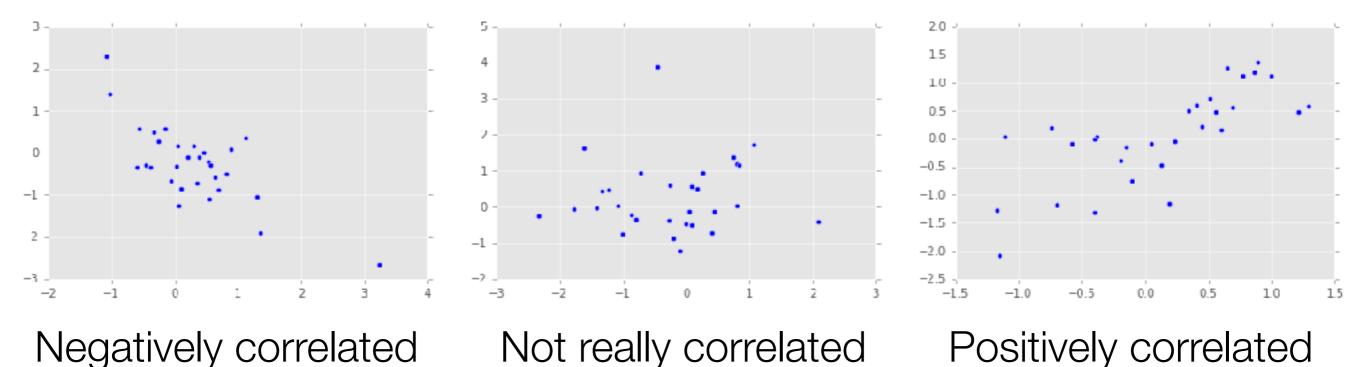


Negatively correlated

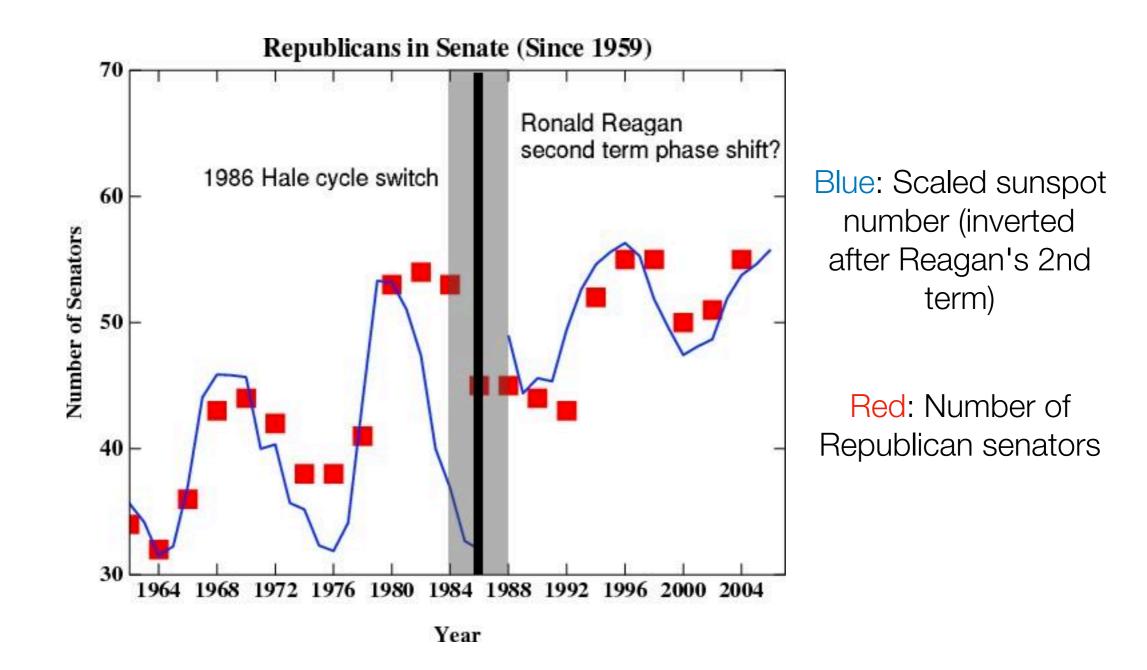
Not really correlated

#### Positively correlated

#### Correlation

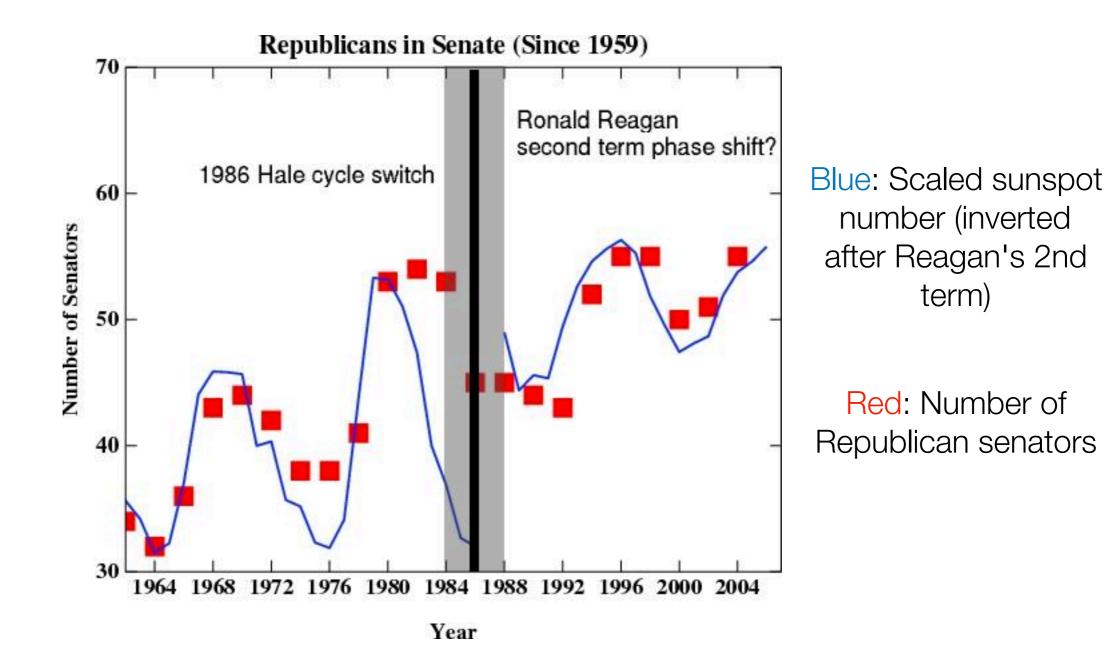


Beware: Just because two variables appear correlated doesn't mean that one can predict the other



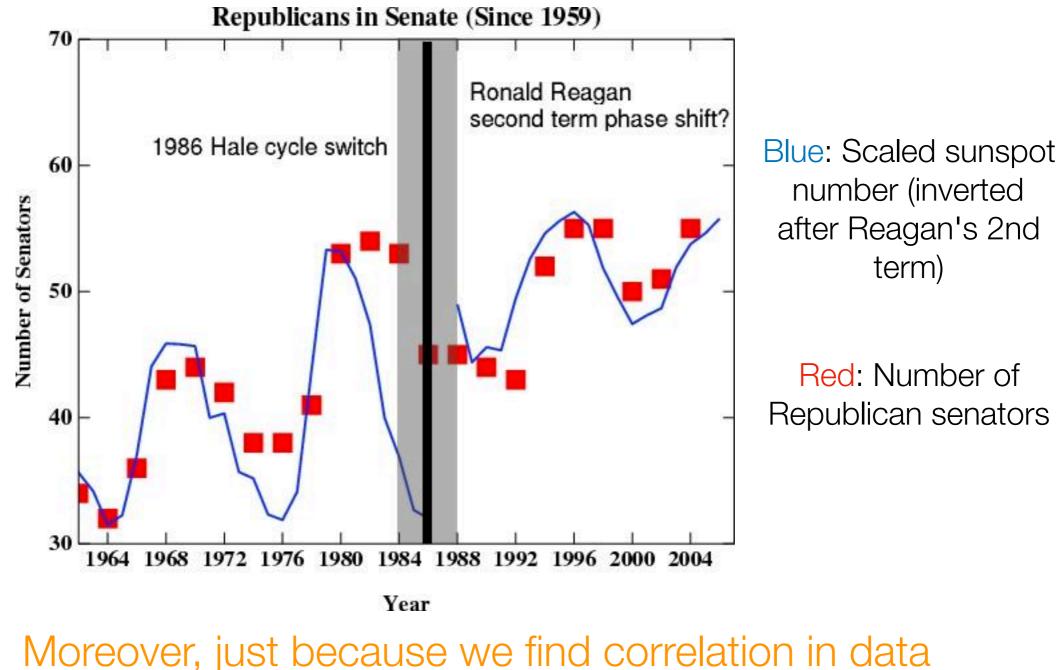
http://www.realclimate.org/index.php/archives/2007/05/fun-with-correlations/

#### Correlation ≠ Causation



http://www.realclimate.org/index.php/archives/2007/05/fun-with-correlations/

#### Correlation ≠ Causation



doesn't mean it has predictive value!

http://www.realclimate.org/index.php/archives/2007/05/fun-with-correlations/

Important: At this point in the course, we are finding *possible* relationships between two entities

# Important: At this point in the course, we are finding *possible* relationships between two entities

We are *not* yet making statements about prediction (we'll see prediction later in the course)

# Important: At this point in the course, we are finding *possible* relationships between two entities

We are *not* yet making statements about prediction (we'll see prediction later in the course)

We are *not* making statements about causality (beyond the scope of this course)

### Causality

#### Causality



#### Causality



Studies in 1960's: Coffee drinkers have higher rates of lung cancer

### Causality



Studies in 1960's: Coffee drinkers have higher rates of lung cancer Can we claim that coffee is a cause of lung cancer?

### Causality



Studies in 1960's: Coffee drinkers have higher rates of lung cancer

Can we claim that coffee is a cause of lung cancer?

Back then: coffee drinkers also tended to smoke more than non-coffee drinkers (smoking is a **confounding variable**)

### Causality



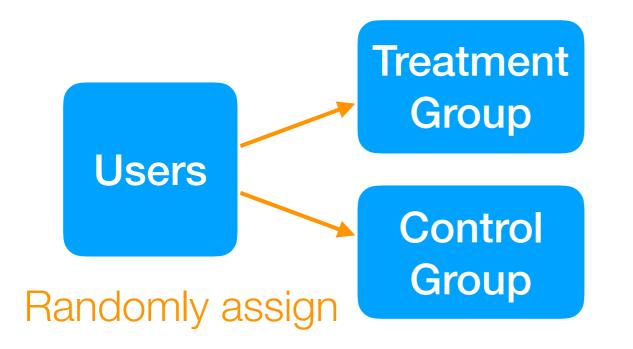
Studies in 1960's: Coffee drinkers have higher rates of lung cancer

Can we claim that coffee is a cause of lung cancer?

Back then: coffee drinkers also tended to smoke more than non-coffee drinkers (smoking is a **confounding variable**)

To establish causality, groups getting different treatments need to appear similar so that the only difference is the treatment









If you control data collection



Example: figure out webpage layout to maximize revenue (Amazon)

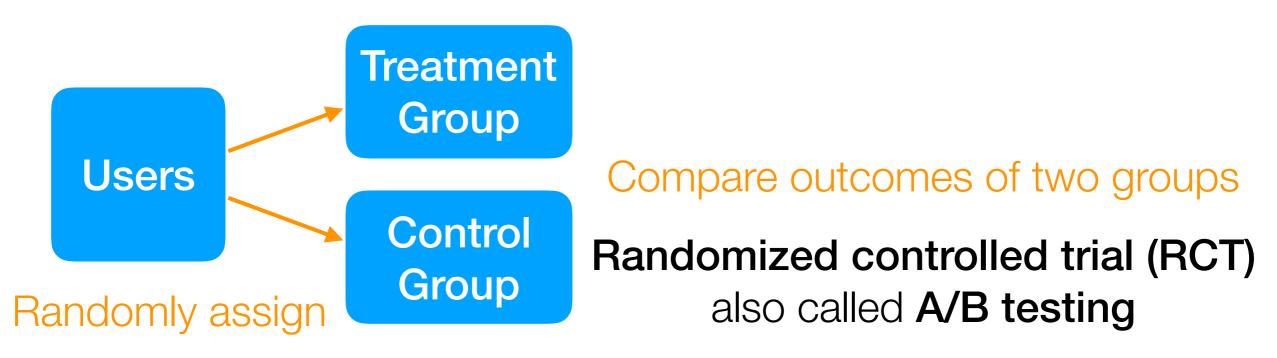
If you control data collection



Example: figure out webpage layout to maximize revenue (Amazon)

Example: figure out how to present educational material to improve learning (Khan Academy)

If you control data collection

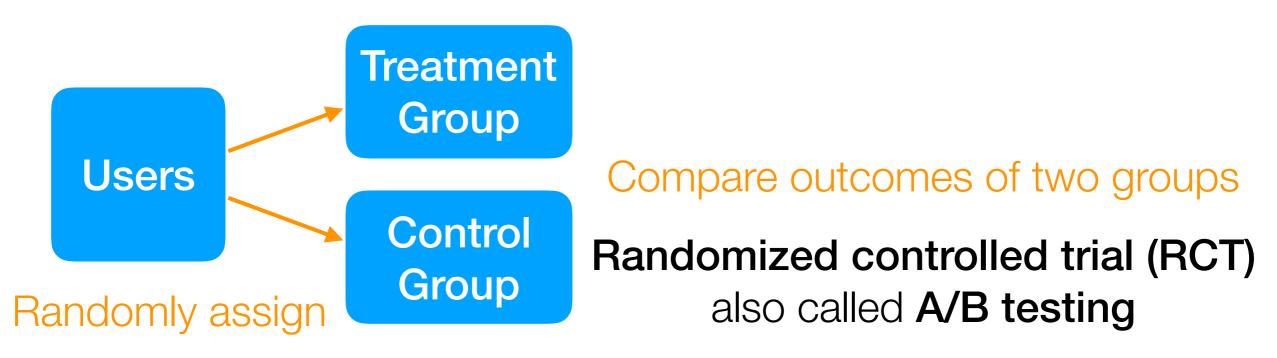


Example: figure out webpage layout to maximize revenue (Amazon)

Example: figure out how to present educational material to improve learning (Khan Academy)

#### If you do not control data collection

If you control data collection



Example: figure out webpage layout to maximize revenue (Amazon)

Example: figure out how to present educational material to improve learning (Khan Academy)

#### If you do not control data collection

In general: not obvious establishing what caused what

# Course Outline (Tentative)

Part 1: Identify structure present in "unstructured" data **Exploratory data analysis** 

Frequency and co-occurrences

Clustering Unsupervised learning Topic modeling (special kind of clustering) Part 2: Make predictions using structure found in part 1 Supervised learning **Predictive data analysis** Basic classification and regression models Adaptive nearest neighbor methods Deep learning models for classification

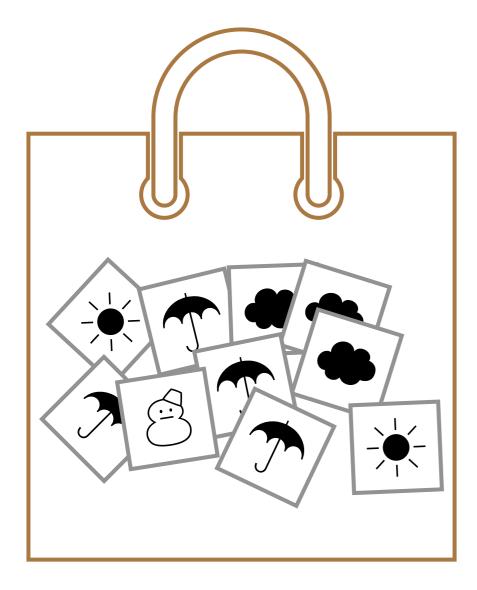
# **Course Outline (Tentative)**

Part 1: Identify structure present in "unstructured" data **Exploratory data analysis** Frequency and co-occurrences Basic probability theory & stats Clustering Unsupervised learning Topic modeling (special kind of clustering) Part 2: Make predictions using structure found in part 1 Supervised learning **Predictive data analysis** Basic classification and regression models Adaptive nearest neighbor methods Deep learning models for classification

# We just did a crash course on basic probability theory and statistics

# We just did a crash course on basic probability theory and statistics

What is the difference between probability theory and statistics?







 Suppose we know how many cards are in the bag with each token/symbol

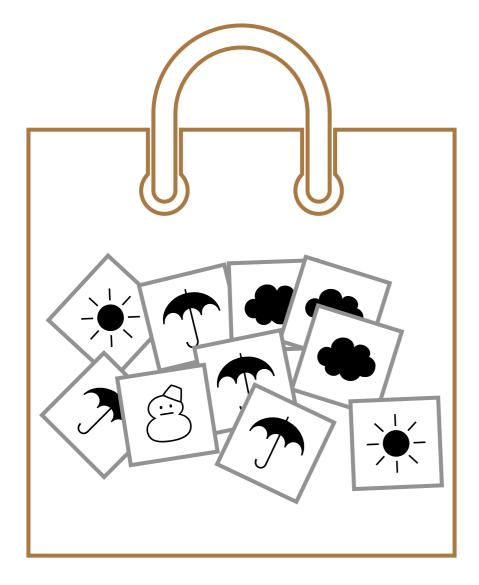


- Suppose we know how many cards are in the bag with each token/symbol
- Can reason about probability of drawing different outcomes



- Suppose we know how many cards are in the bag with each token/symbol
- Can reason about probability of drawing different outcomes

"Fitting the model":



- Suppose we know how many cards are in the bag with each token/symbol
- Can reason about probability of drawing different outcomes

"Fitting the model":

• We set the number of cards of each token/symbol based on observed frequencies in the data



#### Probabilistic model Bag of werds model:

- Suppose we know how many cards are in the bag with each token/symbol
- Can reason about probability of drawing different outcomes

"Fitting the model":

• We set the number of cards of each token/symbol based on observed frequencies in the data



#### Probabilistic model Bag of words model:

- Suppose we know how many cards are in the bag with each token/cymbol the model parameters
- Can reason about probability of drawing different outcomes

"Fitting the model":

• We set the number of cards of each token/symbol based on observed frequencies in the data



#### Probabilistic model Bag of werds model:

- Suppose we know how many cards are in the bag with each token/cymbol the model parameters
- Can reason about probability of drawing different outcomes

"Fitting the model":

We get the number of cards of each token (symbol based on observed frequencies in the data

In general: often not as simple as using frequencies in the data



Probabilistic model Bag of words model:

- Suppose we know how many carde are in the bag with each teken/cymbel the model parameters
- Can reason about probability of drawing different outcomes

"Fitting the model":

We set the number of cards of each token (symbol based on observed frequencies in the data

In general: often not as simple as using frequencies in the data Also: how do we know unigram bag of words is the "right" model?

**Probabilistic model** 

Model parameters  $\theta$ Model of randomness

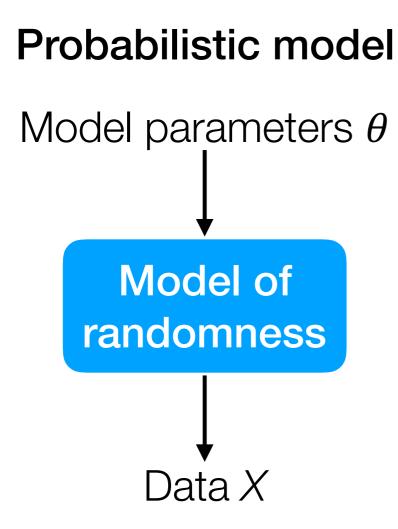
Probability theory:

**Probabilistic model** 

Model parameters  $\theta$ Model of randomness

Probability theory:

• Assume we know model of randomness and parameters  $\theta$ 



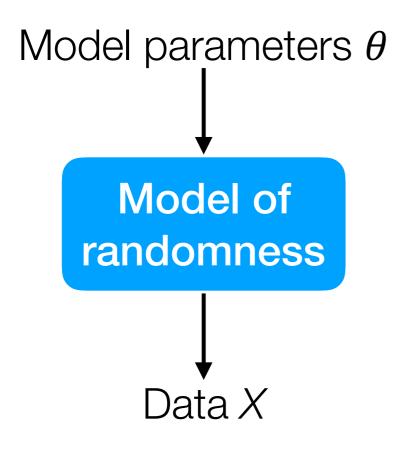
#### **Probabilistic model**



Probability theory:

- Assume we know model of randomness and parameters  $\boldsymbol{\theta}$
- Reason about what happens in the model, what data X look like

#### **Probabilistic model**

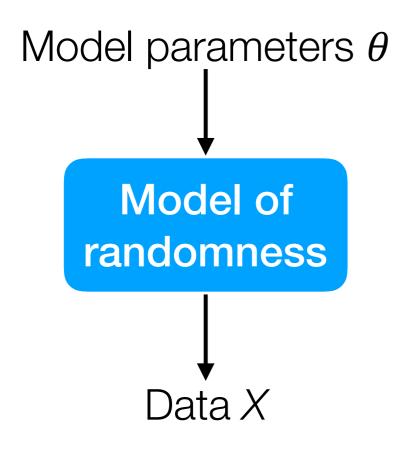


Probability theory:

- Assume we know model of randomness and parameters  $\boldsymbol{\theta}$
- Reason about what happens in the model, what data X look like

Statistics:

#### **Probabilistic model**



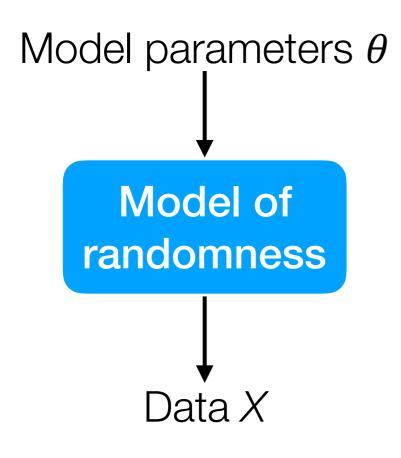
Probability theory:

- Assume we know model of randomness and parameters  $\boldsymbol{\theta}$
- Reason about what happens in the model, what data *X* look like

Statistics:

• Assume we collect data X

#### **Probabilistic model**



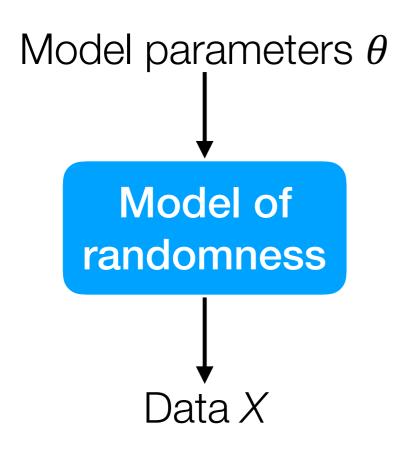
Probability theory:

- Assume we know model of randomness and parameters  $\boldsymbol{\theta}$
- Reason about what happens in the model, what data X look like

Statistics:

- Assume we collect data X
- Reason about what model of randomness makes sense, and what its parameters θ are

#### **Probabilistic model**



Probability theory:

- Assume we know model of randomness and parameters  $\boldsymbol{\theta}$
- Reason about what happens in the model, what data X look like

Statistics:

- Assume we collect data X
- Reason about what model of randomness makes sense, and what its parameters θ are

We will be seeing these ideas a lot in this course!