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What does it mean for a named entity to co-occur with itself?
Example: could count # articles in which word appears ≥ 2 times

Large values => 
possible related 

items
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within a sentence, or a paragraph, etc

• This approach ignores # of co-occurrences within a 
specific document (e.g., if 1 doc has “Elon Musk” 
and “Tesla” appear 10 times, we count this as 1)
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whether it happened in a doc

Bottom Line
• There are many ways to count co-occurrences
• You should think about what makes the most sense/is 

reasonable for the problem you’re looking at
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Black and white frequently co-occur, but is this relationship interesting?

Green White Black
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White 200 2000 350

Black 200 350 2000

How I’m counting: For each pixel, look at neighboring 4 pixels and compare their values  
(1 of “green green”, “green white”, “green black”, “white white”, “white black”, “black black”)
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What is PMI Measuring?

P(A)
P(A, B)

P(B)

Probability of A and B co-occurring

Probability of A and B co-occurring if they were independent

PMI measures (the log of) a ratio that says 
how far A and B are from being independent

There are lots of connections of information 
theory to prediction

Rough intuition: 
Something surprising ⬌ less predictable ⬌ more bits to store

if equal to 1 
➔ A, B are indep.
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…
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Add these up to get: 
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Interpretation: neighboring pixels not close to being indep.
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Back to Earlier Example
Tesla Apple

Elon Musk 300 1

Tim Cook 1 195

PMI, phi-square, chi-square calculations are done the same way
Main things to calculate first:

P(Elon Musk, Tesla)
P(Elon Musk, Apple)
P(Tim Cook, Tesla)
P(Tim Cook, Apple)

P(Elon Musk)
P(Tim Cook)

P(Tesla)
P(Apple)

The math here is actually a bit easier to think about 
because the rows and columns aren't indexing the same items
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Back to Earlier Example
Tesla Apple

Elon Musk 300 1

Tim Cook 1 195
Total: 497

Tesla Apple

Elon Musk 300/497 1/497

Tim Cook 1/497 195/497

Divide by total

These are the joint probabilities!

P(Elon Musk, Tesla)

P(Elon Musk, Apple)

P(Tim Cook, Tesla)

P(Tim Cook, Apple)

Compute "marginals"

300/497+1/497

1/497+195/497

300/497+1/497 1/497+195/497 P(Elon Musk)

P(Tim Cook)

P(Tesla)

P(Apple)

Not just for 2 by 2 tables
(e.g., we could have many 
people, many companies)
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Recap: Co-Occurrences
• Joint probability P(A, B) can be poor indicator of 

whether A and B co-occurring is “interesting”

• Find interesting relationships between pairs of items 
by looking at PMI

• In practice: some times it is helpful to generalize PMI 
and look instead at

logPMI𝜌(A, B) = 2
P(A, B)𝜌

P(A) P(B)
Tune parameter 

𝜌 > 0

• Intuition: “Interesting” co-occurring events should 
occur more frequently than if they were to  
co-occur independently

(we'll talk about parameter tuning later in the course)



Example Application of PMI: 
Image Segmentation

Phillip Isola, Daniel Zoran, Dilip Krishnan, and Edward H. Adelson. Crisp boundary detection 
using pointwise mutual information. ECCV 2014.



Example Application of PMI: 
Word Embeddings

Omer Levy and Yoav Goldberg. Neural word embeddings as implicit matrix factorization. 
NIPS 2014.

Image source: https://deeplearning4j.org/img/countries_capitals.png
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Continuous Measurements
• So far, looked at relationships between discrete outcomes

• For pair of continuous outcomes, use a scatter plot

Of course, not 
all trends look 

like a line
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The Importance of Staring at Data

Var. 1

Var. 2

Var. 1

Var. 2

Var. 1

Var. 2

Var. 1

Var. 2

In general: not obvious what curve to fit (if any)

Not enough data 
=> might think 

there's a pattern 
when it's just noise

In general: not obvious if some points are 
outliers and should be excluded
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Correlation

Negatively correlated Not really correlated Positively correlated

Beware: Just because two variables appear correlated 
doesn't mean that one can predict the other



Blue: Scaled sunspot 
number (inverted 

after Reagan's 2nd 
term)

Red: Number of 
Republican senators

http://www.realclimate.org/index.php/archives/2007/05/fun-with-correlations/



Correlation ≠ Causation

Blue: Scaled sunspot 
number (inverted 

after Reagan's 2nd 
term)

Red: Number of 
Republican senators

http://www.realclimate.org/index.php/archives/2007/05/fun-with-correlations/



Correlation ≠ Causation

Moreover, just because we find correlation in data 
doesn't mean it has predictive value!

Blue: Scaled sunspot 
number (inverted 

after Reagan's 2nd 
term)

Red: Number of 
Republican senators

http://www.realclimate.org/index.php/archives/2007/05/fun-with-correlations/
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Important: At this point in the 
course, we are finding possible 

relationships between two entities
We are not yet making statements about 

prediction (we'll see prediction later in the course)

We are not making statements about causality 
(beyond the scope of this course)
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Causality

Studies in 1960's: Coffee drinkers have higher rates of lung cancer
Can we claim that coffee is a cause of lung cancer?

Back then: coffee drinkers also tended to smoke more than non-coffee 
drinkers (smoking is a confounding variable)

To establish causality, groups getting different treatments need to 
appear similar so that the only difference is the treatment
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Establishing Causality
If you control data collection

Users Compare outcomes of two groups

Treatment 
Group

Control 
GroupRandomly assign

Randomized controlled trial (RCT) 
also called A/B testing

Example: figure out webpage layout to maximize revenue (Amazon)

Example: figure out how to present educational material to improve 
learning (Khan Academy)

If you do not control data collection
In general: not obvious establishing what caused what
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What is the difference between probability theory and statistics?
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Bag of words model:
• Suppose we know how many 
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token/symbol

• Can reason about probability of 
drawing different outcomes

"Fitting the model":
• We set the number of cards of 

each token/symbol based on 
observed frequencies in the data

Probabilistic model

the model parameters

In general: often not as simple as using frequencies in the data
Also: how do we know unigram bag of words is the "right" model?
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Probability Theory vs Statistics
Probability theory:
• Assume we know model of 

randomness and parameters 𝜃
• Reason about what happens in 

the model, what data X look like

Statistics:
• Assume we collect data X
• Reason about what model of 

randomness makes sense, and 
what its parameters 𝜃 are

Model of 
randomness

Model parameters 𝜃

Data X

Probabilistic model

We will be seeing these ideas a lot in this course!


